Social Simulation in the Social Sciences

Social Science Computer Review - Tập 32 Số 3 - Trang 279-294 - 2014
Flaminio Squazzoni1, Wander Jager2, Bruce Edmonds3
1Department of Economics and Management, University of Brescia, Brescia, Italy
2University of Groningen, Groningen, The Netherlands
3Centre for Policy Modelling, Manchester Metropolitan University, Manchester, United Kingdom#TAB#

Tóm tắt

This article provides an overview of the social simulation approach to the study of social phenomena. We focus especially on the relevance of heterogeneity of social behavior and dynamics and the complex interplay of agent behavior and social structure. The article identifies the peculiarities and the explanatory achievements of this approach and then discusses its prospects and challenges. Special attention is given to (i) how micro-level behavioral detail can be used to understand social patterns and dynamics; (ii) the importance of the meso level of social networks; and (iii) the two-way, process linkages between micro and macro aspects as a fundamental source of social uncertainty and unpredictability.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.psych.60.110707.163514

10.1073/pnas.200327197

10.1126/science.1215842

Ariely D., 2008, Predictably irrational: The hidden forces that shape our decisions

10.1515/9781400822300

10.1007/978-3-642-29000-8

10.1126/science.286.5439.509

10.1038/nrg2918

10.1257/0895330027265

Bhawani S, 2004, Adaptive knowledge dynamics and emergent artificial societies: Ethnographically based multi-agent simulations of behavioural adaptation in agro-climatic systems

Boero R., 2009, Sociological Research Online, 14

Boero R., 2010, Journal of Artificial Societies and Social Simulation, 13

10.1038/nature11421

10.1016/j.tpb.2003.07.001

10.1126/science.1183665

10.1016/j.socnet.2012.03.001

10.1086/209118

Bruch E., 2009, The Oxford handbook of analytical sociology, 269

10.1086/208633

10.1111/j.1478-9302.2012.00270.x

10.1056/NEJMsa066082

10.1023/A:1012919018402

10.1007/978-1-4615-1159-5

10.1142/S0219525908001647

10.1016/j.socnet.2009.04.002

Deffuant G., 2002, Journal of Artificial Societies and Social Simulation, 5, 4

Durlauf S., 1997, The Washington Quarterly, 21, 157

10.18564/jasss.2178

Edmonds B., 2010, Computational analysis of firm organisations and strategic behaviour, 36

10.1093/acprof:oso/9780199812677.003.0003

10.1080/00222500590921283

10.1007/978-3-540-93813-2

10.1007/s10588-008-9052-0

10.1037/a0020151

Elsenbroich C., 2013, Modelling norms

Epstein J. M., 2006, Generative social science. Studies in agent-based computational modeling

10.1111/j.1461-0248.2011.01615.x

10.1073/pnas.1011687108

10.1140/epjb/e20020045

10.1111/j.1540-5885.2011.00788.x

Geyer R., 2011, Complexity and public policy: A new approach to 21st century politics, policy and society

10.18564/jasss.2159

10.1111/j.1756-8765.2008.01006.x

10.1007/978-3-642-01109-2_2

Gintis H., 2009, The bounds of reason. Game theory and the unification of the behavioral sciences

10.7551/mitpress/4771.001.0001

10.1509/jmkg.73.2.1

Granovetter M., 1972, Getting a job. A study of contacts and careers

10.1086/226707

10.1016/j.ijresmar.2013.03.003

Hales D, 2002, Journal of Artificial Societies and Social Simulation, 5

10.1017/CBO9780511488801

Hegselmann R., 2002, Journal of Artificial Societies and Social Simulation, 5

10.1007/978-3-642-24004-1

10.1515/9781400846504

10.1126/science.1153651

10.1142/S0219525908001799

10.1007/s10588-005-6282-2

Jager W., 2008, FreqNet: A new approach in formalizing social networks

Janssen M, 2006, Journal of Artificial Societies and Social Simulation, 9

10.1086/599247

10.1073/pnas.1008636108

Macy M., 2009, The Oxford handbook of analytical sociology, 245

10.1146/annurev.soc.28.110601.141117

Miller J. H., 2007, Complex adaptive systems. An introduction to computational models of social life

10.1126/science.1240466

10.1509/jm.10.0209

Ormerod P., 2012, Positive linking. How networks can revolutionise the world

10.1007/s11299-009-0058-1

10.1257/jep.14.3.137

10.1515/9781400835140

Pahl-Wostl C., 2002, International Environmental Modelling and Software Society, 2, 239

10.1016/j.evolhumbehav.2007.12.002

10.1016/j.jmp.2010.10.002

Rhodes M. L., 2011, Public management and complexity theory. Richer decision-making in public service

Risselada H., 2012, Analyzing behavior in customer relationships accounting for customer-to-customer interactions

Rogers E. M., 1983, Diffusion of innovations

10.4337/9780857932648

10.1038/mp.2010.13

10.1177/000312240306800202

10.1126/science.1121066

10.1371/journal.pcbi.0020140

10.1017/CBO9780511734892

10.1080/0022250X.1971.9989794

Simmel G, 1907, The philosophy of money

10.1515/9781400845347

10.1146/annurev.soc.34.040507.134601

10.1073/pnas.0704598104

Speelman E. N., Agent-based modelling of farmer's land use decision-making in a multi-level social-ecological system using social behavioural theory

Squazzoni F., 2010, History of Economic Ideas, 17, 197

10.1002/9781119954200

Squazzoni F., 2010, Innovation in complex social systems, 290

Sun R. (Ed.)., 2006, Cognition and multi-agent interaction: From cognitive modeling to social simulation

Surowiecki J., 2004, The wisdom of crowds

Sutcliffe A., 2012, Journal of Artificial Societies and Social Simulation, 15, 3

Sutcliffe A., 2012, Journal of Artificial Societies and Social Simulation, 15, 3

Taylor R. I, 2003, Agent-based modelling incorporating qualitative and quantitative methods: A case study investigating the impact of e-commerce upon the value chain

10.1146/annurev-psych-113011-143812

10.1287/mksc.2013.0773

10.1007/978-3-662-03366-1_3

Van Eck P. S., 2013, The invisible force that shapes our world. Insights into complex, dynamic social influence processes: A marketing perspective

10.1111/j.1540-5885.2011.00791.x

10.1073/pnas.082090499

Watts D., 2009, The Oxford handbook of analytical sociology, 475

10.1515/9780691188331

10.1016/j.socnet.2012.05.003