Ảnh hưởng của tuyết tan đến các sự kiện sinh thái học của thực vật thảo mộc ở vùng núi Tây Himalaya

Brazilian Journal of Botany - Tập 46 - Trang 1041-1054 - 2023
Rahul Kumar1, Bhupendra S. Adhikari1,2
1Ecodevelopment Planning and Participatory Management Department, Wildlife Institute of India, Chandrabani, India
2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India

Tóm tắt

Thời gian tuyết tan là một yếu tố chính kiểm soát hiện tượng sinh trưởng của cây trồng ở các vùng núi cao. Hiện nay, sự ấm lên của khí hậu đang thúc đẩy thời gian tuyết tan, điều này có thể ảnh hưởng đến chu kỳ mùa vụ của các loài trên toàn cảnh quan núi cao của Himalaya. Tuy nhiên, rất ít nghiên cứu đã điều tra phản ứng của hiện tượng sinh trưởng của các loài đối với thời gian tuyết tan đã tiến sớm ở Himalaya. Nghiên cứu hiện tại đã khảo sát phản ứng của các loài núi cao khác nhau đối với việc tuyết tan sớm có mặt trong các cộng đồng núi cao khác nhau. Năm cộng đồng đã được xác định và hai địa điểm được chọn trong mỗi cộng đồng (tuyết tan sớm: ES, tuyết tan muộn: LS) với một ô đất 50 × 50 m được đánh dấu cố định để theo dõi các loài. Các quan sát về thời điểm khởi đầu và độ dài của từng giai đoạn sinh trưởng của tất cả các loài đã được ghi lại hàng hai tuần. Phép kiểm Kruskal-Wallis đã được thực hiện để xem xét sự khác biệt theo loài trong độ dài các giai đoạn sinh trưởng. Sự khác biệt từng cặp đã được kiểm tra bằng phép kiểm hậu nghiệm Dunn. Nghiên cứu hiện tại giả thuyết rằng tuyết tan sớm làm tiến nhanh và kéo dài thời gian và độ dài của các giai đoạn sinh trưởng ở tất cả các loài núi cao. Kết quả cho thấy rằng thời điểm khởi đầu và độ dài của các giai đoạn sinh trưởng diễn ra sớm và kéo dài hơn ở các địa điểm ES đối với đa số các loài, nhưng không tìm thấy mối quan hệ có ý nghĩa giữa thời gian tuyết tan và độ dài giai đoạn sinh trưởng của các loài. Nhiều loài thể hiện hai giai đoạn sinh trưởng phân biệt (sinh sản và ra quả). Sự khác biệt cao hơn ở giai đoạn sinh sản hơn là ở các giai đoạn sinh thái học khác. Do đó, có thể thấy rằng tuyết tan sớm là một yếu tố quan trọng ảnh hưởng đến sinh trưởng mùa xuân sớm của các loài thảo mộc, và những tác động theo loài của sự điều chỉnh sinh thái học đang xảy ra nhằm đạt được thành công sinh sản cao hơn trong sự ấm lên hiện tại của các đồng cỏ núi cao cũng chỉ ra rằng còn nhiều yếu tố hạn chế khác cần được hiểu rõ hơn.

Từ khóa

#tuyết tan; hiện tượng sinh trưởng; thực vật thảo mộc; đại ngàn núi cao; Himalaya

Tài liệu tham khảo

Aalto J, Scherrer D, Lenoir J et al (2018) Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environ Res Lett 13:074003. https://doi.org/10.1088/1748-9326/aac83e Abeli T, Rossi G, Gentili R et al (2012) Response of alpine plant flower production to temperature and snow cover fluctuation at the species range boundary. Plant Ecol 213:1–13 Adhikari BS, Kumar R (2020) Effect of snowmelt regime on phenology of herbaceous species at and around treeline in Western Himalaya, India. Not Sci Biol 12:901–919. https://doi.org/10.15835/nsb12410716 Adhikari BS, Kumar R, Singh SP (2018) Early snowmelt impact on herb species composition diversity and phenology in a western Himalayan treeline ecotone. Trop Ecol 59:365–382 Baptist F, Yoccoz NG, Choler P (2010) Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant Soil 328:397–410. https://doi.org/10.1007/s11104-009-0119-6 Berauer BJ, Wilfahrt PA, Arfin-Khan MA et al (2019) Low resistance of montane and alpine grasslands to abrupt changes in temperature and precipitation regimes. Arct Antarct Alp Res 51:215–231. https://doi.org/10.1080/1523043020191618116 Bijalwan R, Vats M, Joshi SP (2013) Plant phenological response to microclimatic variations in an alpine zone of Garhwal Himalaya. J App Nat Sci 5:47–52 Bisht VK, Kuniyal CP, Bhandari AK et al (2014) Phenology of plants in relation to ambient environment in a subalpine forest of Uttarakhand western Himalaya. Physiol Mol Biol Plants 20:399–403. https://doi.org/10.1007/s12298-014-0238-2 Bjorkman AD, Elmendorf SC, Beamish AL et al (2015) Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob Change Biol 21:4651–4661. https://doi.org/10.1111/gcb.13051 Buntgen U, Hellmann L, Tegel W et al (2015) Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J Ecol 103:489–501. https://doi.org/10.1111/1365-2745.12361 Cooper EJ, Dullingerb S, Semenchuk P (2011) Late snowmelt delays plant development and results in lower reproductive success in the high arctic. Plant Sci 180:157–167. https://doi.org/10.1016/j.plantsci.2010.09.005 Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Change Biol 17:990–996. https://doi.org/10.1111/j1365-2486201002266x Dorji T, Totland O, Moe SR et al (2013) Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob Change Biol 19:459–472. https://doi.org/10.1111/gcb.12059 Dunne JA, Harte J, Taylor KJ (2003) Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol Monogr 73:69–86 Elzinga JA, Atlan A, Biere A et al (2007) Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22(8):432–439 Ernakovich JG, Hopping KA, Berdanier AB et al (2014) Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob Change Biol 20:3256–3269. https://doi.org/10.1111/gcb12568 Fazlioglu F, Wan JS (2021) Warming matters: alpine plant responses to experimental warming. Clim Change 164:1–17. https://doi.org/10.1007/s10584-021-02996-3 Forrest J, Miller-Rushing AJ (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Phil Trans R Soc B 3653101–31122010.https://doi.org/10.1098/rstb.2010.0145 Gehrmann F, Ziegler C, Cooper EJ (2021) Onset of autumn senescence in High Arctic plants shows similar patterns in natural and experimental snow depth gradients. Arct Sci. https://doi.org/10.1139/as-2020-004 Gezon ZJ, Inouye DW, Irwin RE (2016) Phenological change in a spring ephemeral: implications for pollination and plant reproduction. Glob Change Biol 22:1779–1793. https://doi.org/10.1111/gcb.13209 Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362 Jabis MD, Winkler DE, Kuppers LM (2020) Warming acts through earlier snowmelt to advance but not extend alpine community flowering. Ecology 101:e03108. https://doi.org/10.1002/ECY.3108 Jerome DK, Petry WK, Mooney KA, Iler AM (2021) Snow melt timing acts independently and in conjunction with temperature accumulation to drive subalpine plant phenology. Glob Change Biol 27:5054–5069. https://doi.org/10.1111/gcb15803 Kawai Y, Kudo G (2018) Variations in ramet performance and the dynamics of an alpine evergreen herb, Gentiana nipponica, in different snowmelt conditions. Am J Bot 105:1813–1823. https://doi.org/10.1002/ajb2.1186 Kimball KD, Davis ML, Weihrauch DM et al (2014) Limited alpine climatic warming and modeled phenology advancement for three alpine species in the northeast United States. Am J Bot 101:1437–1446. https://doi.org/10.3732/ajb.1400214 Körner C (1999) Alpine plants: stressed or adapted? In: Press M, Scholes J, Barker M Physiological Plant Ecology (eds). 39th Symposium of the British Ecological Society, Cambridge University Press 39:297–311 Körner C, Hiltbrunner E (2021) Why Is the Alpine Flora Comparatively Robust against Climatic Warming? Diversity 13:383. https://doi.org/10.3390/d13080383 Körner C, Basler D, Hoch G et al (2016) Where why and how? Explaining the low-temperature range limits of temperate tree species. J Ecol 104:1076–1088. https://doi.org/10.1111/1365-274512574 Krenová Z, Kindlmann P, Shelly JS et al (2022) Are temperate alpine plants with distinct phenology more vulnerable to extraordinary climate events than their continuously flowering relatives in tropical mountains? Front Ecol Evol. https://doi.org/10.3389/fevo2021804102 Kudo G (2020) Dynamics of flowering phenology of alpine plant communities in response to temperature and snowmelt time: Analysis of a nine-year phenological record collected by citizen volunteers. Environ Exp Bot 170:103843. https://doi.org/10.1016/jenvexpbot2019103843 Kumar R, Adhikari B S (2023) Natural snowmelt timing influences community structre and phenological patterns in alpine meadows, West Himalaya: a case study. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-023-01509-9 Liu Y, Reich PB, Li G, Sun S (2011) Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology 92:1201–1207. https://doi.org/10.1890/10-20601 Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717. https://doi.org/10.1111/j1461-0248200701061x Mulder CPH, Iles DT, Rockwell RF (2017) Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community. Glob Change Biol 23:801–814. https://doi.org/10.1111/gcb.13386 Nautiyal MC, Nautiyal BP, Prakash V (2001) Phenology and growth form distribution in an alpine pasture at Tungnath, Garhwal Himalaya. Mt Res Dev 21:168–174 Negi GCS, Rikhari HC, Singh SP (1992) Phenological features in relation to growth forms and biomass accumulation in an alpine meadow of the Central Himalaya. Vegetatio 101:161–170. https://doi.org/10.1007/BF00033199 Oberbauer SF, Elmendorf SC, Troxler TG et al (2013) Phenological response of tundra plants to background climate variation tested using the international tundra experiment. Philos Trans R Soc B 368:20120481. https://doi.org/10.1098/rstb.2012.0481 Palaj A, Kollár J (2021) Expansion of phanerophytes above the timberline in the Western Carpathians. Biologia 76:1991–2003. https://doi.org/10.1007/s11756-021-00782-1 Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Rev Ecol Evol Syst 37:637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 Pérez-Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardized measurement of plant functional traits worldwide. Aust J Bot 61:167–234 Prevéy J, Vellend M, Rüger N et al (2017) Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Glob Change Biol 23:2660–2671. https://doi.org/10.1111/gcb13619 Price MV, Waser NM (1998) Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology 79:1261–1271 Prieto-Benítez S, Morente-López J, Rubio Teso ML et al (2021) Evaluating assisted gene flow in marginal populations of a high mountain species. Front Ecol Evol. https://doi.org/10.3389/fevo.2021.638837 Ram J, Singh SP, Singh JS (1988) Community level phenology of grassland above treeline in central Himalaya India. Arct Antarct Alp Res 20:325–332. https://doi.org/10.1080/00040851198812002680 Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Change 114:527–547. https://doi.org/10.1007/s10584-012-0419-3 Reyes-Fox M, Steltzer H, Trlica MJ et al (2014) Elevated CO2 further lengthens growing season under warming conditions. Nature 510:259–262. https://doi.org/10.1038/nature13207 Reyes-Fox M, Steltzer H, LeCain DR, McMaster GS (2016) Five years of phenology observations from a mixed-grass prairie exposed to warming and elevated CO2. Sci Data 3:1–8. https://doi.org/10.1038/sdata.2016.88 Schuchardt MA, Berauer BJ, von Heßberg A et al (2021) Drought effects on montane grasslands nullify benefits of advanced flowering phenology due to warming. Ecosphere. https://doi.org/10.1002/ecs23661 Semenchuk PR, Gillespie MAK, Rumpf SB et al (2016) High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: an example of periodicity. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/12/125006 Sherry RA, Zhou X, Gu S et al (2007) Divergence of reproductive phenology under climate warming. PNAS 104:198–202 Singh P, Negi GCS (2018) Treeline species phenology: shoot growth leaf characteristics and nutrient dynamics. Trop Ecol 59:297–311 Smith JG, Sconiers W, Spasojevic MJ et al (2012) Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arct Ant Alp Res 44(1):135–142. https://doi.org/10.1657/1938-4246-44.1.135 Sonntag S, Fourcade Y (2022) Where will species on the move go? Insights from climate connectivity modelling across European terrestrial habitats. J Nat Conserv 66:126139. https://doi.org/10.1016/jjnc2022126139 Steinbauer MJ, Grytnes JA, Jurasinski G et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231. https://doi.org/10.1038/s41586-018-0005-6 Stocker TF, Qin D, Plattner GK et al (2013) Technical summary in climate change 2013: the physical science basis contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. pp 33–115 Cambridge University Press Sundriyal RC, Joshi AP, Dhasmana R (1987) Phenology of high altitude plants at Tungnath in the Garhwal Himalaya. Trop Ecol 28:289–299 Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109. https://doi.org/10.1023/A:1010632015572 Tian L, Fu W, Tao Y et al (2022) Dynamics of the alpine timberline and its response to climate change in the Hengduan mountains over the period 1985–2015. Ecol Indic 135:108589. https://doi.org/10.1016/j.ecolind.2022.108589 Tonin R, Gerdol R, Tomaselli M et al (2019) Intraspecific functional trait response to advanced snowmelt suggests increase of growth potential but decrease of seed production in snowbed plant species. Front Plant Sci 10:1–12. https://doi.org/10.3389/fpls.2019.00289 Vashistha RK, Rawat N, Chaturvedi AK et al (2009) An exploration on the phenology of different growth forms of an alpine expanse of North-West Himalaya, India. N Y Sci J 2:29–41. https://doi.org/10.1007/s11676-011-0194-4 Vashistha RK, Rawat N, Chaturvedi AK et al (2011) Characteristics of life-form and growth-form of plant species in an alpine ecosystem of North-West Himalaya. J For Res 22:501. https://doi.org/10.1007/s11676-011-0194-4 Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim Change 94:105–121. https://doi.org/10.1007/s10584-009-9546-x Wolkovich EM, Cook BI, Allen JM et al (2012) Warming experiments underpredict plant phenological responses to climate change. Nature. 485:494–497. https://doi.org/10.1038/nature11014 Wu X, Guo W, Liu H et al (2019) Exposures to temperature beyond threshold disproportionately reduce vegetation growth in the northern hemisphere. Natl Sci Rev 6:786–795. https://doi.org/10.1093/nsr/nwy158 Yu H, Luedeling E, Xua J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. PNAS 107:22151–22156. https://doi.org/10.1073/pnas.1012490107 Zhang X, Zwiers FW, Hegerl GC et al (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465. https://doi.org/10.1038/nature06025