Snow Samples Combined With Long-Range Transport Modeling to Reveal the Origin and Temporal Variability of Black Carbon in Seasonal Snow in Sodankylä (67°N)

Outi Meinander1, Anna Kontu2, Rostislav Kouznetsov1,3, Mikhail Sofiev1
1Atmospheric Composition Research Unit, Climate Research Programme, Finnish Meteorological Institute, Finland
2Earth Observation Research Unit, Space and Earth Observation Centre, Finnish Meteorological Institute, Finland
3Obukhov Institute for Atmospheric Physics, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

116OsloBlasck Carbon and Ozone as Arcticclimate forcers, Arctic Monitoring and Assessment Programme Arctic Monitoring and Assessment Programme (AMAP)2015

Birch, 2003, Diesel Particulate Matter (as Elemental carbon)Method 5040, in NIOSH Manual of Analytical Methods, National Institute of Occupational Safety and Health

Birch, 1996, Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust, Aerosol. Sci. Technol, 25, 221, 10.1080/02786829608965393

Bond, 2013, Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res, 118, 5380, 10.1002/jgrd.50171

Boy, 2019, Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes, Atmos. Chem. Phys, 19, 2015, 10.5194/acp-19-2015-2019

Brasseur, 2019, Ensemble forecasts of air quality in eastern China – part 1: model description and implementation of the marcopolo–panda prediction system, version 1, Geosci. Model Dev, 12, 33, 10.5194/gmd-12-33-2019

Brown, 2017, Standardisation of a European measurement method for organic carbon and elemental carbon in ambient air: results of the field trial campaign and the determination of a measurement uncertainty and working range, Environ. Sci. Process Impacts, 19, 1249, 10.1039/C7EM00261K

2017, European Committee for Standardisation, EN 16909:2017, Ambient Air – Measurement of Elemental Carbon (EC) and Organic Carbon (OC) Collected on Filters.

Doherty, 2013, Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow, J. Geophys. Res. Atmos., 118, 10.1002/jgrd.50235

Doherty, 2010, Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys, 10, 11647, 10.5194/acp-10-11647-2010

Eckhardt, 2017, Source–receptor matrix calculation for deposited mass with the Lagrangian particle dispersion model FLEXPART v10.2 in backward mode, Geosci. Model Dev, 10, 4605, 10.5194/gmd-10-4605-2017

Emerson, 2018, Direct measurements of dry and wet deposition of black carbon over a grassland, J. Geophys. Res. Atmos., 123, 12277, 10.1029/2018JD028954

Flanner, 2013, Arctic climate sensitivity to local black carbon, J. Geophys. Res, 118, 1840, 10.1002/jgrd.50176

Flanner, 2007, Present day climate forcing and response from black carbon in snow, J. Geophys. Res, 112, D11202, 10.1029/2006JD008003

2020

Forsström, 2009, Elemental carbon distribution in svalbard snow, J. Geophys. Res, 114, D19112, 10.1029/2008JD011480

Galperin, 2000, “The approaches to correct computation of airborne pollution advection,”, Problems of Ecological Monitoring and Ecosystem Modelling. XVII (in Russian), 54

Granier, 2019, The Copernicus Atmosphere Monitoring Service Global and Regional Emissions (April 2019 Version)

Hansen, 2004, Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci. U. S. A., 101, 423, 10.1073/pnas.2237157100

Huijnen, 2010, Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models, Atmospheric Chem. Phys, 10, 3273, 10.5194/acp-10-3273-2010

Ikonen, 2015, The sodankylä in situ soil moisture observation network: an example application to earth observation data product evaluation, Geosci. Instrum.Method Data Syst. Discuss, 5, 599, 10.5194/gid-5-599-2015

IPCC special report on the ocean and cryosphere in a changing climate PörtnerH.-O. RobertsD.C. Masson-DelmotteV. ZhaiP. TignorM. PoloczanskaE. MintenbeckK. AlegríaA. NicolaiM. OkemA. PetzoldJ. RamaB. WeyerN.M. 319940262019

Jiao, 2014, An aerocom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys, 14, 2399, 10.5194/acp-14-2399-2014

Kangas, 2016, Weather model verification using Sodankylä mast measurements, Geosci. Instrum. Method. Data Syst, 5, 75, 10.5194/gi-5-75-2016

Koch, 2005, Distant origins of arcticblack carbon, a goddard institute for space studies modeleexperiment, J. Geophys. Res, 110, D04204, 10.1029/2004JD005296

Laborde, 2013, Black carbon physical properties and mixing state in the European megacity Paris, Atmos. Chem. Phys, 13, 5831, 10.5194/acp-13-5831-2013

Lakkala, 2016, Optical laboratory facilities at the Finnish Meteorological Institute—Arctic Research Centre, Geosci. Instrum. Method, Data Syst, 5, 315, 10.5194/gi-5-315-2016

Leppänen, 2016, Sodankylä manual snow survey program, Geosci. Instrum. Method. Data Syst, 5, 163, 10.5194/gi-5-163-2016

Mäkelä, 2016, Data flow of spectral UV measurements at Sodankylä and Jokioinen, Geosci, Instrum. Method. Data Syst, 5, 193, 10.5194/gi-5-193-2016

MeinanderO. Helsinki (Finland)Belongs to series: finnish meteorological Institute Contributions—URN:ISSN:0782-6117, University of HelsinkiEffect of black carbon and Icelandic dust on snow albedo, melt and density2016

Meinander, 2013, Spectral albedo of seasonal snow during intensive melt period at Sodankylä, beyond the Arctic Circle, Atmos. Chem. Phys, 13, 3793, 10.5194/acp-13-3793-2013

Meinander, 2008, Diurnal variations in the UV albedo of arctic snow, Atmos. Chem. Phys, 8, 6551, 10.5194/acp-8-6551-2008

Meinander, 2014, Brief communication: Light-absorbing impurities can reduce the density of melting snow, Cryosphere, 8, 991, 10.5194/tc-8-991-2014

Mori, 2019, Black carbon and inorganic aerosols in Arctic snowpack, J. Geophys. Res. Atmos, 124, 13325, 10.1029/2019JD030623

Peltoniemi, 2015, Soot on Snow experiment: bidirectional reflectance factor measurements of contaminated snow, Cryosphere, 9, 2323, 10.5194/tc-9-2323-2015

Petersen, 2019, Ensemble forecasts of air quality in eastern China–Part 2: evaluation of the MarcoPolo–Panda prediction system, version 1, Geosci Model Dev, 12, 1241, 10.5194/gmd-12-1241-2019

96 PirinenP. SimolaH. AaltoJ. KaukorantaJ.-P. KarlssonP. RuuhelaR. Climatological Statistics of Finland 1981–2010, Finnish Meteorological Institute Reports20122012

Prank, 2010, A refinement of the emission data for Kola Peninsula based on inverse dispersion modeling, Atmos. Chem. Phys, 10, 10849, 10.5194/acp-10-10849-2010

Saarikoski, 2007, Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: experimental and modelling assessments, Atmos. Environ, 41, 3577, 10.1016/j.atmosenv.2006.12.053

Sand, 2013, The Arctic response to remote and local forcing of black carbon, Atmos. Chem. Phys, 13, 211, 10.5194/acp-13-211-2013

Schwarz, 2010, Global-scale black carbon profiles observed in the remote atmosphere and compared to model, Geophys. Res. Lett, 37, L18812, 10.1029/2010GL044372

Serreze, 2011, Processes and impacts of arctic amplification: a research synthesis, Global Planet. Change, 77, 85, 10.1016/j.gloplacha.2011.03.004

Sharma, 2013, 16-years simulation of Arctic black carbon: transport, source contribution, and sensitivity analysis on deposition, J. Geophys. Res, 118, 1, 10.1029/2012JD017774

Siljamo, 2008, Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland, Aerobiologia, 24, 211, 10.1007/s10453-008-9100-8

Sofiev, 2002, Extended resistance analogy for construction of the vertical diffusion scheme for dispersion models, J. Geophys. Res. Atmos, 107, 4159, 10.1029/2001JD001233

Sofiev, 2015, Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin, Geosci. Model Dev., 8, 3497, 10.5194/gmd-8-3497-2015

Stohl, 2006, Characteristics of atmospheric transport into the Arctic troposphere, J. Geophys. Res, 111, D11306, 10.1029/2005JD006888

Stohl, 2013, Black carbon in the Arctic:the underestimated role of gas flaring and residential combustion emissions, Atmos. Chem. Phys, 13, 8833, 10.5194/acp-13-8833-2013

Sturm, 1995, A seasonal snow cover classification system for local to global applications, J. Climate, 8, 1261, 10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2

Sukuvaara, 2016, Vehicular-networking- and road-weather-related research in Sodankylä, Geosci. Instrum. Method. Data Syst, 5, 513, 10.5194/gi-5-513-2016

Forest GroveSunset Laboratory IncOrganic Carbon / Elemental Carbon (OCEC) Laboratory Instrument Manual.2018

Svensson, 2018, Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic, Atmos. Meas. Tech, 11, 1403, 10.5194/amt-11-1403-2018

Tietäväinen, 2010, Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data, Int. J. Climatol, 30, 2247, 10.1002/joc.2046

Veriankaite, 2010, Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania, Aerobiologia, 26, 47, 10.1007/s10453-009-9142-6

Wang, 2011, Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys, 11, 12453, 10.5194/acp-11-12453-2011

Warren, 1980, A model for the spectral albedo of snow. II: snow containing atmospheric aerosols, J. Atmos. Sci., 37, 2734, 10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2

Xu, 2009, Black soot and the survival of Tibetan glaciers, Proc. Natl. Acad. Sci. U. S. A., 106, 22114, 10.1073/pnas.0910444106

Zhang, 2015, Long-range transport of black carbon to the Pacific Ocean and its dependence on aging timescale, Atmos. Chem. Phys, 15, 11521, 10.5194/acp-15-11521-2015