Snake Optimizer: A novel meta-heuristic optimization algorithm

Knowledge-Based Systems - Tập 242 - Trang 108320 - 2022
Fatma A. Hashim1, Abdelazim G. Hussien2,3
1Faculty of Engineering, Helwan University, Egypt
2Department of Computer and Information Science, Linköping University, Linköping, Sweden
3Faculty of Science, Fayoum University, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hassanien, 2018

Hussien, 2019, S-shaped binary whale optimization algorithm for feature selection, 79

Hussien, 2020, Binary whale optimization algorithm for dimensionality reduction, Mathematics, 8, 1821, 10.3390/math8101821

Hussien, 2017, Swarming behaviour of salps algorithm for predicting chemical compound activities, 315

Hao, 2018, Virtual factory system design and implementation: Integrated sustainable manufacturing, Int. J. Syst. Sci.: Oper. Logist., 5, 116

Simpson, 1994, Genetic algorithms compared to other techniques for pipe optimization, J. Water Resour. Plan. Manage., 120, 423, 10.1061/(ASCE)0733-9496(1994)120:4(423)

Hussien, 2017, A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection, 166

Gharaei, 2020, Modelling and optimal lot-sizing of the replenishments in constrained, multi-product and bi-objective EPQ models with defective products: Generalised cross decomposition, Int. J. Syst. Sci.: Oper. Logist., 7, 262

Luenberger, 1984

Hussien, 2020, Crow search algorithm: theory, recent advances, and applications, IEEE Access, 8, 173548, 10.1109/ACCESS.2020.3024108

Sayyadi, 2018, A simulation-based optimisation approach for identifying key determinants for sustainable transportation planning, Int. J. Syst. Sci.: Oper. Logist., 5, 161

Rabbani, 2020, A hybrid robust possibilistic approach for a sustainable supply chain location-allocation network design, Int. J. Syst. Sci.: Oper. Logist., 7, 60

Yang, 2010

Abualigah, 2020, Nature-inspired optimization algorithms for text document clustering—A comprehensive analysis, Algorithms, 13, 345, 10.3390/a13120345

Hussien, 2020, New binary whale optimization algorithm for discrete optimization problems, Eng. Optim., 52, 945, 10.1080/0305215X.2019.1624740

Sayyadi, 2020, An integrated approach based on system dynamics and ANP for evaluating sustainable transportation policies, Int. J. Syst. Sci.: Oper. Logist., 7, 182

Topal, 2016, A novel meta-heuristic algorithm: dynamic virtual bats algorithm, Inform. Sci., 354, 222, 10.1016/j.ins.2016.03.025

Hussien, 2020, A comprehensive review of moth-flame optimisation: variants, hybrids, and applications, J. Exp. Theor. Artif. Intell., 1

Holland, 1992, Genetic algorithms, Sci. Am., 267, 66, 10.1038/scientificamerican0792-66

Beyer, 2002, Evolution strategies–A comprehensive introduction, Nat. Comput., 1, 3, 10.1023/A:1015059928466

Rocca, 2011, Differential evolution as applied to electromagnetics, IEEE Antennas Propag. Mag., 53, 38, 10.1109/MAP.2011.5773566

Simon, 2008, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12, 702, 10.1109/TEVC.2008.919004

Kirkpatrick, 1983, Optimization by simulated annealing, Science, 220, 671, 10.1126/science.220.4598.671

Rashedi, 2009, Gsa: a gravitational search algorithm, Inform. Sci., 179, 2232, 10.1016/j.ins.2009.03.004

Lam, 2009, Chemical-reaction-inspired metaheuristic for optimization, IEEE Trans. Evol. Comput., 14, 381, 10.1109/TEVC.2009.2033580

Zhao, 2019, Atom search optimization and its application to solve a hydrogeologic parameter estimation problem, Knowl.-Based Syst., 163, 283, 10.1016/j.knosys.2018.08.030

Doğan, 2015, A new metaheuristic for numerical function optimization: Vortex search algorithm, Inform. Sci., 293, 125, 10.1016/j.ins.2014.08.053

Kaveh, 2016, Water evaporation optimization: a novel physically inspired optimization algorithm, Comput. Struct., 167, 69, 10.1016/j.compstruc.2016.01.008

Wei, 2019, Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization, IEEE Access, 7, 66084, 10.1109/ACCESS.2019.2918406

Kennedy, 1995, Particle swarm optimization, 1942

Genç, 2010, Big bang-big crunch optimization algorithm hybridized with local directional moves and application to target motion analysis problem, 881

Kaveh, 2017, A novel meta-heuristic optimization algorithm: thermal exchange optimization, Adv. Eng. Softw., 110, 69, 10.1016/j.advengsoft.2017.03.014

Shareef, 2015, Lightning search algorithm, Appl. Soft Comput., 36, 315, 10.1016/j.asoc.2015.07.028

Abualigah, 2020, Lightning search algorithm: a comprehensive survey, Appl. Intell., 1

Mirjalili, 2016, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27, 495, 10.1007/s00521-015-1870-7

de Vasconcelos Segundo, 2019, Design of heat exchangers using falcon optimization algorithm, Appl. Therm. Eng., 156, 119, 10.1016/j.applthermaleng.2019.04.038

Houssein, 2020, Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 94, 10.1016/j.engappai.2020.103731

Kaveh, 2020, Billiards-inspired optimization algorithm; a new meta-heuristic method, 1722

Hashim, 2019, Henry gas solubility optimization: A novel physics-based algorithm, Future Gener. Comput. Syst., 101, 646, 10.1016/j.future.2019.07.015

Dorigo, 2006, Ant colony optimization, IEEE Comput. Intell. Mag., 1, 28, 10.1109/MCI.2006.329691

Karaboga, 2007, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39, 459, 10.1007/s10898-007-9149-x

Gandomi, 2013, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 29, 17, 10.1007/s00366-011-0241-y

Yang, 2012, Bat algorithm: a novel approach for global engineering optimization, Eng. Comput., 10.1108/02644401211235834

Yang, 2010, Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-Inspired Comput., 2, 78, 10.1504/IJBIC.2010.032124

Yang, 2012, Flower pollination algorithm for global optimization, 240

Askarzadeh, 2016, A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm, Comput. Struct., 169, 1, 10.1016/j.compstruc.2016.03.001

Gandomi, 2012, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17, 4831, 10.1016/j.cnsns.2012.05.010

Wang, 2015, Elephant herding optimization, 1

Glover, 1989, Tabu search—part i, ORSA J. Comput., 1, 190, 10.1287/ijoc.1.3.190

Glover, 1990, Tabu search—part II, ORSA J. Comput., 2, 4, 10.1287/ijoc.2.1.4

Mirjalili, 2014, Grey wolf optimizer, Adv. Eng. Softw., 69, 46, 10.1016/j.advengsoft.2013.12.007

Mirjalili, 2015, The ant lion optimizer, Adv. Eng. Softw., 83, 80, 10.1016/j.advengsoft.2015.01.010

Assiri, 2020, Ant lion optimization: variants, hybrids, and applications, IEEE Access, 8, 77746, 10.1109/ACCESS.2020.2990338

Mirjalili, 2016, The whale optimization algorithm, Adv. Eng. Softw., 95, 51, 10.1016/j.advengsoft.2016.01.008

Mirjalili, 2017, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114, 163, 10.1016/j.advengsoft.2017.07.002

Hussien, 2021, An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems, J. Ambient Intell. Humaniz. Comput., 1

Saremi, 2017, Grasshopper optimisation algorithm: theory and application, Adv. Eng. Softw., 105, 30, 10.1016/j.advengsoft.2017.01.004

Heidari, 2019, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97, 849, 10.1016/j.future.2019.02.028

Hussien, 2021, A self-adaptive harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection, Int. J. Mach. Learn. Cybern., 1

Jain, 2019, A novel nature-inspired algorithm for optimization: Squirrel search algorithm, Swarm Evol. Comput., 44, 148, 10.1016/j.swevo.2018.02.013

Dhiman, 2018, Emperor penguin optimizer: A bio-inspired algorithm for engineering problems, Knowl.-Based Syst., 159, 20, 10.1016/j.knosys.2018.06.001

Dhiman, 2019, Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems, Knowl.-Based Syst., 165, 169, 10.1016/j.knosys.2018.11.024

Dhiman, 2017, Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications, Adv. Eng. Softw., 114, 48, 10.1016/j.advengsoft.2017.05.014

Abualigah, 2021, Aquila optimizer: A novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 107250

Zhao, 2020, Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications, Eng. Appl. Artif. Intell., 87, 10.1016/j.engappai.2019.103300

Yapici, 2019, A new meta-heuristic optimizer: pathfinder algorithm, Appl. Soft Comput., 78, 545, 10.1016/j.asoc.2019.03.012

Sulaiman, 2020, Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 87, 10.1016/j.engappai.2019.103330

Li, 2020, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 10.1016/j.future.2020.03.055

Zhao, 2019, Supply-demand-based optimization: a novel economics-inspired algorithm for global optimization, IEEE Access, 7, 73182, 10.1109/ACCESS.2019.2918753

Cheng, 2014, A competitive swarm optimizer for large scale optimization, IEEE Trans. Cybern., 45, 191, 10.1109/TCYB.2014.2322602

Abdullah, 2019, Fitness dependent optimizer: inspired by the bee swarming reproductive process, IEEE Access, 7, 43473, 10.1109/ACCESS.2019.2907012

Hussien, 2022, Boosting whale optimization with evolution strategy and gaussian random walks: an image segmentation method, Eng. Comput., 1

Maciel, 2020, Side-blotched lizard algorithm: A polymorphic population approach, Appl. Soft Comput., 88, 10.1016/j.asoc.2019.106039

Rao, 2011, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43, 303, 10.1016/j.cad.2010.12.015

Huan, 2017, Ideology algorithm: a socio-inspired optimization methodology, Neural Comput. Appl., 28, 845, 10.1007/s00521-016-2379-4

Kumar, 2018, Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology, Future Gener. Comput. Syst., 81, 252, 10.1016/j.future.2017.10.052

Li, 2016, Cognitive behavior optimization algorithm for solving optimization problems, Appl. Soft Comput., 39, 199, 10.1016/j.asoc.2015.11.015

Mousavirad, 2017, Human mental search: a new population-based metaheuristic optimization algorithm, Appl. Intell., 47, 850, 10.1007/s10489-017-0903-6

Moosavi, 2019, Poor and rich optimization algorithm: A new human-based and multi populations algorithm, Eng. Appl. Artif. Intell., 86, 165, 10.1016/j.engappai.2019.08.025

Das, 2020, Student psychology based optimization algorithm: a new population based optimization algorithm for solving optimization problems, Adv. Eng. Softw., 146, 10.1016/j.advengsoft.2020.102804

Shabani, 2020, Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems, Expert Syst. Appl., 161, 10.1016/j.eswa.2020.113698

Abualigah, 2021, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Engrg., 376, 10.1016/j.cma.2020.113609

Das, 2009, Differential evolution using a neighborhood-based mutation operator, IEEE Trans. Evol. Comput., 13, 526, 10.1109/TEVC.2008.2009457

Draa, 2015, A sinusoidal differential evolution algorithm for numerical optimisation, Appl. Soft Comput., 27, 99, 10.1016/j.asoc.2014.11.003

Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67, 10.1109/4235.585893

Shine, 2003, Reproductive strategies in snakes, Proc. R. Soc. B, 270, 995, 10.1098/rspb.2002.2307

Shine, 2001, Benefits of female mimicry in snakes, Nature, 414, 267, 10.1038/35104687

Yang, 2021, Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177, 114864, 10.1016/j.eswa.2021.114864

Wu, 2017

Wilcoxon, 1992, Individual comparisons by ranking methods, 196

Mezura-Montes, 2005, Useful infeasible solutions in engineering optimization with evolutionary algorithms, 652

Coello, 2000, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41, 113, 10.1016/S0166-3615(99)00046-9

Kannan, 1994

Arora, 2004