Snake Optimizer: A novel meta-heuristic optimization algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hassanien, 2018
Hussien, 2019, S-shaped binary whale optimization algorithm for feature selection, 79
Hussien, 2020, Binary whale optimization algorithm for dimensionality reduction, Mathematics, 8, 1821, 10.3390/math8101821
Hussien, 2017, Swarming behaviour of salps algorithm for predicting chemical compound activities, 315
Hao, 2018, Virtual factory system design and implementation: Integrated sustainable manufacturing, Int. J. Syst. Sci.: Oper. Logist., 5, 116
Simpson, 1994, Genetic algorithms compared to other techniques for pipe optimization, J. Water Resour. Plan. Manage., 120, 423, 10.1061/(ASCE)0733-9496(1994)120:4(423)
Hussien, 2017, A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection, 166
Gharaei, 2020, Modelling and optimal lot-sizing of the replenishments in constrained, multi-product and bi-objective EPQ models with defective products: Generalised cross decomposition, Int. J. Syst. Sci.: Oper. Logist., 7, 262
Luenberger, 1984
Hussien, 2020, Crow search algorithm: theory, recent advances, and applications, IEEE Access, 8, 173548, 10.1109/ACCESS.2020.3024108
Sayyadi, 2018, A simulation-based optimisation approach for identifying key determinants for sustainable transportation planning, Int. J. Syst. Sci.: Oper. Logist., 5, 161
Rabbani, 2020, A hybrid robust possibilistic approach for a sustainable supply chain location-allocation network design, Int. J. Syst. Sci.: Oper. Logist., 7, 60
Yang, 2010
Abualigah, 2020, Nature-inspired optimization algorithms for text document clustering—A comprehensive analysis, Algorithms, 13, 345, 10.3390/a13120345
Hussien, 2020, New binary whale optimization algorithm for discrete optimization problems, Eng. Optim., 52, 945, 10.1080/0305215X.2019.1624740
Sayyadi, 2020, An integrated approach based on system dynamics and ANP for evaluating sustainable transportation policies, Int. J. Syst. Sci.: Oper. Logist., 7, 182
Topal, 2016, A novel meta-heuristic algorithm: dynamic virtual bats algorithm, Inform. Sci., 354, 222, 10.1016/j.ins.2016.03.025
Hussien, 2020, A comprehensive review of moth-flame optimisation: variants, hybrids, and applications, J. Exp. Theor. Artif. Intell., 1
Beyer, 2002, Evolution strategies–A comprehensive introduction, Nat. Comput., 1, 3, 10.1023/A:1015059928466
Rocca, 2011, Differential evolution as applied to electromagnetics, IEEE Antennas Propag. Mag., 53, 38, 10.1109/MAP.2011.5773566
Simon, 2008, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12, 702, 10.1109/TEVC.2008.919004
Kirkpatrick, 1983, Optimization by simulated annealing, Science, 220, 671, 10.1126/science.220.4598.671
Rashedi, 2009, Gsa: a gravitational search algorithm, Inform. Sci., 179, 2232, 10.1016/j.ins.2009.03.004
Lam, 2009, Chemical-reaction-inspired metaheuristic for optimization, IEEE Trans. Evol. Comput., 14, 381, 10.1109/TEVC.2009.2033580
Zhao, 2019, Atom search optimization and its application to solve a hydrogeologic parameter estimation problem, Knowl.-Based Syst., 163, 283, 10.1016/j.knosys.2018.08.030
Doğan, 2015, A new metaheuristic for numerical function optimization: Vortex search algorithm, Inform. Sci., 293, 125, 10.1016/j.ins.2014.08.053
Kaveh, 2016, Water evaporation optimization: a novel physically inspired optimization algorithm, Comput. Struct., 167, 69, 10.1016/j.compstruc.2016.01.008
Wei, 2019, Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization, IEEE Access, 7, 66084, 10.1109/ACCESS.2019.2918406
Kennedy, 1995, Particle swarm optimization, 1942
Genç, 2010, Big bang-big crunch optimization algorithm hybridized with local directional moves and application to target motion analysis problem, 881
Kaveh, 2017, A novel meta-heuristic optimization algorithm: thermal exchange optimization, Adv. Eng. Softw., 110, 69, 10.1016/j.advengsoft.2017.03.014
Abualigah, 2020, Lightning search algorithm: a comprehensive survey, Appl. Intell., 1
Mirjalili, 2016, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27, 495, 10.1007/s00521-015-1870-7
de Vasconcelos Segundo, 2019, Design of heat exchangers using falcon optimization algorithm, Appl. Therm. Eng., 156, 119, 10.1016/j.applthermaleng.2019.04.038
Houssein, 2020, Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 94, 10.1016/j.engappai.2020.103731
Kaveh, 2020, Billiards-inspired optimization algorithm; a new meta-heuristic method, 1722
Hashim, 2019, Henry gas solubility optimization: A novel physics-based algorithm, Future Gener. Comput. Syst., 101, 646, 10.1016/j.future.2019.07.015
Karaboga, 2007, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39, 459, 10.1007/s10898-007-9149-x
Gandomi, 2013, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 29, 17, 10.1007/s00366-011-0241-y
Yang, 2012, Bat algorithm: a novel approach for global engineering optimization, Eng. Comput., 10.1108/02644401211235834
Yang, 2010, Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-Inspired Comput., 2, 78, 10.1504/IJBIC.2010.032124
Yang, 2012, Flower pollination algorithm for global optimization, 240
Askarzadeh, 2016, A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm, Comput. Struct., 169, 1, 10.1016/j.compstruc.2016.03.001
Gandomi, 2012, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17, 4831, 10.1016/j.cnsns.2012.05.010
Wang, 2015, Elephant herding optimization, 1
Assiri, 2020, Ant lion optimization: variants, hybrids, and applications, IEEE Access, 8, 77746, 10.1109/ACCESS.2020.2990338
Mirjalili, 2016, The whale optimization algorithm, Adv. Eng. Softw., 95, 51, 10.1016/j.advengsoft.2016.01.008
Mirjalili, 2017, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114, 163, 10.1016/j.advengsoft.2017.07.002
Hussien, 2021, An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems, J. Ambient Intell. Humaniz. Comput., 1
Saremi, 2017, Grasshopper optimisation algorithm: theory and application, Adv. Eng. Softw., 105, 30, 10.1016/j.advengsoft.2017.01.004
Heidari, 2019, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97, 849, 10.1016/j.future.2019.02.028
Hussien, 2021, A self-adaptive harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection, Int. J. Mach. Learn. Cybern., 1
Jain, 2019, A novel nature-inspired algorithm for optimization: Squirrel search algorithm, Swarm Evol. Comput., 44, 148, 10.1016/j.swevo.2018.02.013
Dhiman, 2018, Emperor penguin optimizer: A bio-inspired algorithm for engineering problems, Knowl.-Based Syst., 159, 20, 10.1016/j.knosys.2018.06.001
Dhiman, 2019, Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems, Knowl.-Based Syst., 165, 169, 10.1016/j.knosys.2018.11.024
Dhiman, 2017, Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications, Adv. Eng. Softw., 114, 48, 10.1016/j.advengsoft.2017.05.014
Abualigah, 2021, Aquila optimizer: A novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 107250
Zhao, 2020, Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications, Eng. Appl. Artif. Intell., 87, 10.1016/j.engappai.2019.103300
Yapici, 2019, A new meta-heuristic optimizer: pathfinder algorithm, Appl. Soft Comput., 78, 545, 10.1016/j.asoc.2019.03.012
Sulaiman, 2020, Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 87, 10.1016/j.engappai.2019.103330
Li, 2020, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 10.1016/j.future.2020.03.055
Zhao, 2019, Supply-demand-based optimization: a novel economics-inspired algorithm for global optimization, IEEE Access, 7, 73182, 10.1109/ACCESS.2019.2918753
Cheng, 2014, A competitive swarm optimizer for large scale optimization, IEEE Trans. Cybern., 45, 191, 10.1109/TCYB.2014.2322602
Abdullah, 2019, Fitness dependent optimizer: inspired by the bee swarming reproductive process, IEEE Access, 7, 43473, 10.1109/ACCESS.2019.2907012
Hussien, 2022, Boosting whale optimization with evolution strategy and gaussian random walks: an image segmentation method, Eng. Comput., 1
Maciel, 2020, Side-blotched lizard algorithm: A polymorphic population approach, Appl. Soft Comput., 88, 10.1016/j.asoc.2019.106039
Rao, 2011, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43, 303, 10.1016/j.cad.2010.12.015
Huan, 2017, Ideology algorithm: a socio-inspired optimization methodology, Neural Comput. Appl., 28, 845, 10.1007/s00521-016-2379-4
Kumar, 2018, Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology, Future Gener. Comput. Syst., 81, 252, 10.1016/j.future.2017.10.052
Li, 2016, Cognitive behavior optimization algorithm for solving optimization problems, Appl. Soft Comput., 39, 199, 10.1016/j.asoc.2015.11.015
Mousavirad, 2017, Human mental search: a new population-based metaheuristic optimization algorithm, Appl. Intell., 47, 850, 10.1007/s10489-017-0903-6
Moosavi, 2019, Poor and rich optimization algorithm: A new human-based and multi populations algorithm, Eng. Appl. Artif. Intell., 86, 165, 10.1016/j.engappai.2019.08.025
Das, 2020, Student psychology based optimization algorithm: a new population based optimization algorithm for solving optimization problems, Adv. Eng. Softw., 146, 10.1016/j.advengsoft.2020.102804
Shabani, 2020, Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems, Expert Syst. Appl., 161, 10.1016/j.eswa.2020.113698
Abualigah, 2021, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Engrg., 376, 10.1016/j.cma.2020.113609
Das, 2009, Differential evolution using a neighborhood-based mutation operator, IEEE Trans. Evol. Comput., 13, 526, 10.1109/TEVC.2008.2009457
Draa, 2015, A sinusoidal differential evolution algorithm for numerical optimisation, Appl. Soft Comput., 27, 99, 10.1016/j.asoc.2014.11.003
Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67, 10.1109/4235.585893
Yang, 2021, Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177, 114864, 10.1016/j.eswa.2021.114864
Wu, 2017
Wilcoxon, 1992, Individual comparisons by ranking methods, 196
Mezura-Montes, 2005, Useful infeasible solutions in engineering optimization with evolutionary algorithms, 652
Coello, 2000, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41, 113, 10.1016/S0166-3615(99)00046-9
Kannan, 1994
Arora, 2004