Tổng hợp sợi carbon gắn SnO2 bằng phương pháp lắng đọng hơi hóa học (CVD): ảnh hưởng của các thông số tăng trưởng đến hình thái và đặc tính điện hoá

Journal of Materials Science - Tập 55 - Trang 15588-15601 - 2020
Tuan Kien Nguyen1, Shu Hearn Yu1, Jiaxin Yan1, Daniel H. C. Chua1
1Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore

Tóm tắt

Các hiệu ứng hình thái lên hành vi điện hoá của Oxit thiếc (SnO2) gần đây đã được khám phá trong một số nghiên cứu. Tuy nhiên, việc chuẩn bị SnO2 trong các công trình đó chủ yếu dựa vào các phương pháp hóa học ướt, trong khi việc sử dụng các phương pháp hóa học khô vẫn chưa được điều tra đầy đủ. Trong nghiên cứu này, lần đầu tiên, chúng tôi báo cáo việc chế tạo thành công các hạt SnO2 gắn trên sợi carbon thông qua một phương pháp lắng đọng hơi hóa học (CVD) đơn giản với hai bước. Các thông số tăng trưởng CVD (nhiệt độ, thời gian tăng trưởng và lưu lượng khí vào) đã được thay đổi một cách có hệ thống để quan sát sự thay đổi trong hình thái (về mật độ hạt và phân bố kích thước) cũng như sự hình thành các cấu trúc lõi–vỏ Sn/SnO2; và các tính chất điện hoá của các mẫu đã tổng hợp được nghiên cứu. Các thí nghiệm của chúng tôi chỉ ra sự tương quan mạnh mẽ giữa các điều kiện tổng hợp, hình thái và hành vi điện hoá. Tóm lại, các phát hiện của chúng tôi cung cấp những hiểu biết mới về CVD như một phương pháp điều chỉnh hình thái cho các ứng dụng điện hoá - ngoài thiết bị đơn giản và thời gian tổng hợp ngắn, quá trình này dễ dàng mở rộng cho việc chuẩn bị các hạt kim loại và oxit kim loại khác.

Từ khóa

#SnO2 #sợi carbon #lắng đọng hơi hóa học #CVD #hành vi điện hoá #hình thái #cấu trúc lõi-vỏ

Tài liệu tham khảo

Ryu I, Yang M, Kwon H, Park HK, Do YR, Lee SB, Yim S (2014) Coaxial RuO2–ITO nanopillars for transparent supercapacitor application. Langmuir 30(6):1704–1709. https://doi.org/10.1021/la4044599 Bi R-R, Wu X-L, Cao F-F, Jiang L-Y, Guo Y-G, Wan L-J (2010) Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J Phys Chem C 114(6):2448–2451. https://doi.org/10.1021/jp9116563 He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2012) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7(1):174–182. https://doi.org/10.1021/nn304833s Chen K, Noh YD, Li K, Komarneni S, Xue D (2013) Microwave-hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage. J Phys Chem C 117(20):10770–10779. https://doi.org/10.1021/jp4018025 Kim JS, Shin SS, Han HS, Oh LS, Kim DH, Kim J-H, Kim JY (2013) 1-D structured flexible supercapacitor electrodes with prominent electronic/ionic transport capabilities. ACS Appl Mater Interfaces 6(1):268–274. https://doi.org/10.1021/am404132j Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12(5):2559–2567. https://doi.org/10.1021/nl300779a Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115(31):15646–15654. https://doi.org/10.1021/jp201200e Deori K, Ujjain SK, Sharma RK, Deka S (2013) Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Appl Mater Interfaces 5(21):10665–10672. https://doi.org/10.1021/am4027482 Guan Q, Cheng J, Wang B, Ni W, Gu G, Li X, Nie F (2014) Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interfaces 6(10):7626–7632. https://doi.org/10.1021/am5009369 Zhu J, Cao L, Wu Y, Gong Y, Liu Z, Hoster HE, Vajtai R (2013) Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett 13(11):5408–5413. https://doi.org/10.1021/nl402969r Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukla AK (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133(40):16291–16299. https://doi.org/10.1021/ja207285b Wang Y, Huang ZX, Shi Y, Wong JI, Ding M, Yang HY (2015) Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Sci Rep. https://doi.org/10.1038/srep09164 Hu Z, Xie Y, Wang Y, Mo L, Yang Y, Zhang Z (2009) Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater Chem Phys 114(2–3):990–995. https://doi.org/10.1016/j.matchemphys.2008.11.005 Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl Mater Interfaces 6(3):2174–2184. https://doi.org/10.1021/am405301v Yang Y, Ren S, Ma S, Hao C, Ji M (2015) Hollow tin dioxide microspheres with multilayered nanocrystalline shells for pseudocapacitor. Electrochim Acta 155:437–446. https://doi.org/10.1016/j.electacta.2014.12.166 Bonu V, Gupta B, Chandra S, Das A, Dhara S, Tyagi A (2016) Electrochemical supercapacitor performance of SnO2 quantum dots. Electrochim Acta 203:230–237. https://doi.org/10.1016/j.electacta.2016.03.153 Cui H, Liu Y, Ren W, Wang M, Zhao Y (2013) Large scale synthesis of highly crystallized SnO2 quantum dots at room temperature and their high electrochemical performance. Nanotechnology 24(34):345602. https://doi.org/10.1088/0957-4484/24/34/345602 Thorat GM, Jadhav HS, Chung W-J, Seo JG (2018) Collective use of deep eutectic solvent for one-pot synthesis of ternary Sn/SnO2@C electrode for supercapacitor. J Alloy Compd 732:694–704. https://doi.org/10.1016/j.jallcom.2017.10.176 He C, Xiao Y, Dong H, Liu Y, Zheng M, Xiao K, Lei B (2014) Mosaic-structured SnO2@C porous microspheres for high-performance supercapacitor electrode materials. Electrochim Acta 142:157–166. https://doi.org/10.1016/j.electacta.2014.07.077 Chen M, Wang H, Li L, Zhang Z, Wang C, Liu Y, Gao J (2014) Novel and facile method, dynamic self-assemble, to prepare SnO2/rGO droplet aerogel with complex morphologies and their application in supercapacitors. ACS Appl Mater Interfaces 6(16):14327–14337. https://doi.org/10.1021/am5036169 Wu M, Zhang L, Wang D, Xiao C, Zhang S (2008) Cathodic deposition and characterization of tin oxide coatings on graphite for electrochemical supercapacitors. J Power Sour 175(1):669–674. https://doi.org/10.1016/j.jpowsour.2007.09.062 Sephra PJ, Baraneedharan P, Sivakumar M, Thangadurai TD, Nehru K (2018) Size controlled synthesis of SnO2 and its electrostatic self- assembly over reduced graphene oxide for photocatalyst and supercapacitor application. Mater Res Bull 106:103–112. https://doi.org/10.1016/j.materresbull.2018.05.038 Bekermann D, Barreca D, Gasparotto A, Maccato C (2012) Multi-component oxide nanosystems by chemical vapor deposition and related routes: challenges and perspectives. Cryst Eng Comm 14(20):6347. https://doi.org/10.1039/c2ce25624j Zervos M, Othonos A (2012) A systematic study of the nitridation of SnO2 nanowires grown by the vapor liquid solid mechanism. J Cryst Growth 340(1):28–33. https://doi.org/10.1016/j.jcrysgro.2011.11.063 Liu Y, Koep E, Liu M (2005) A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem Mater 17(15):3997–4000. https://doi.org/10.1021/cm050451o Pan J, Zhang J, Shen H, Xiong Q, Mathur S (2012) Correction to “switchable wettability in SnO2 nanowires and SnO2@SnO2 heterostructures”. J Phys Chem C 116(25):13835–13836. https://doi.org/10.1021/jp305167t Venkatesan S, Visvalingam B, Mannathusamy G et al (2018) Effect of chemical vapor deposition parameters on the diameter of multi-walled carbon nanotubes. Int Nano Lett 8:297–308. https://doi.org/10.1007/s40089-018-0252-4 Kang SK, Lee HS (2019) Study on Growth parameters for monolayer MoS2 synthesized by CVD using solution-based metal precursors. Appl Sci Converg Technol 28(5):159–163. https://doi.org/10.5757/asct.2019.28.5.159 Chowdhury MA, Nuruzzaman DM, Rahaman ML (2011) The effect of gas flow rate on the thin film deposition rate on carbon steel using thermal CVD. Int J Chem Reactor Eng. https://doi.org/10.2202/1542-6580.2673 Lu W, Jiang C, Caudle D, Tang C, Sun Q, Xu J, Song J (2013) Controllable growth of laterally aligned zinc oxide nanorod arrays on a selected surface of the silicon substrate by a catalyst-free vapor solid process—a technique for growing nanocircuits. Phys Chem Chem Phys 15(32):13532. https://doi.org/10.1039/c3cp51558c Yu M, Zhai T, Lu X, Chen X, Xie S, Li W, Tong Y (2013) Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. J Power Sour 239:64–71. https://doi.org/10.1016/j.jpowsour.2013.03.083 Luo Y, Jiang J, Zhou W, Yang H, Luo J, Qi X, Yu T (2012) Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. J Mater Chem 22(17):8634. https://doi.org/10.1039/c2jm16419a Saha MS, Li R, Cai M, Sun X (2007) High electrocatalytic activity of platinum nanoparticles on SnO2 nanowire-based electrodes. Electrochem Solid State Lett 10(8):B130. https://doi.org/10.1149/1.2745632 Zhang Y, Hu Z, Liang Y, Yang Y, An N, Li Z, Wu H (2015) Growth of 3D SnO2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors. J Mater Chem A 3(29):15057–15067. https://doi.org/10.1039/c5ta02479j Jang HD, Hwang DW, Kim DP, Kim HC, Lee BY, Jeong IB (2004) Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase. Mater Res Bull 39(1):63–70. https://doi.org/10.1016/j.materresbull.2003.09.023 Okuyama K, Kousaka Y, Tohge N, Yamamoto S, Wu JJ, Flagan RC, Seinfeld JH (1986) Production of ultrafine metal oxide aerosol particles by thermal decomposition of metal alkoxide vapors. AIChE J 32(12):2010–2019. https://doi.org/10.1002/aic.690321211 Jang HD, Jeong J (1995) The effects of temperature on particle size in the gas-phase production of TiO2. Aerosol Sci Technol 23(4):553–560. https://doi.org/10.1080/02786829508965337 Ivanova AR (1999) The effects of processing parameters in the chemical vapor deposition of cobalt from cobalt tricarbonyl nitrosyl. J Electrochem Soc 146(6):2139. https://doi.org/10.1149/1.1391904 Wegner K, Walker B, Tsantilis S, Pratsinis SE (2002) Design of metal nanoparticle synthesis by vapor flow condensation. Chem Eng Sci 57(10):1753–1762. https://doi.org/10.1016/s0009-2509(02)00064-7 Youn W, Kim C, Hwang N (2013) Effect of the carrier gas flow rate on the microstructure evolution and the generation of the charged nanoparticles during silicon chemical vapor deposition. J Nanosci Nanotechnol 13(10):7127–7130. https://doi.org/10.1166/jnn.2013.7669 Xu J, Deshpande RD, Pan J, Cheng YT, Battaglia VS (2015) Electrode side reactions, capacity loss and mechanical degradation in lithium ion batteries. J Electrochem Soc. https://doi.org/10.1149/2.0291510jes Meng X, Zhou M, Li X, Yao J, Liu F, He H, Zhang Y (2013) Synthesis of SnO2 nanoflowers and electrochemical properties of Ni/SnO2 nanoflowers in supercapacitor. Electrochim Acta 109:20–26. https://doi.org/10.1016/j.electacta.2013.07.052 Lindsay GA (1952) Pressure energy and Bernoulli's principle. Am J Phys 20(2):86–88. https://doi.org/10.1119/1.1933123 Qin R, Duan C (2017) The principle and applications of Bernoulli equation. J Phys Conf Ser 916:012038. https://doi.org/10.1088/1742-6596/916/1/012038 Arakeri JH (2000) Bernoulli’s equation. Resonance 5(8):54–71. https://doi.org/10.1007/bf02837937 Nagaev EL (1991) Surface forces and chemical potential of small particles. Phys Status Solidi (b) 167(2):381–404. https://doi.org/10.1002/pssb.2221670202 Sanfeld A, Steinchen A (2000) Surface energy, stress, capillary-elastic pressure and chemical equilibrium constant in nanoparticles. Surf Sci 463(3):157–173. https://doi.org/10.1016/s0039-6028(00)00644-0 Arora N, Jagirdar BR (2014) From (Au5Sn·AuSn) physical mixture to phase pure AuSn and Au5Sn intermetallic nanocrystals with tailored morphology: digestive ripening assisted approach. Phys Chem Chem Phys 16(23):11381–11389. https://doi.org/10.1039/c4cp00249k Ungár T, Gubicza J, Ribárik G, Pantea C, Zerda T (2002) Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon 40(6):929–937. https://doi.org/10.1016/s0008-6223(01)00224-x Si Q, Matsui M, Horiba T, Yamamoto O, Takeda Y, Seki N, Imanishi N (2013) Carbon paper substrate for silicon–carbon composite anodes in lithium–ion batteries. J Power Sour 241:744–750. https://doi.org/10.1016/j.jpowsour.2013.05.090 Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L (2009) One step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20(45):455602. https://doi.org/10.1088/0957-4484/20/45/455602 Rani R, Sharma S (2016) Preparation and Characterization of SnO2 Nanofibers via Electrospinning. Adv Nanopart 05(01):53–59. https://doi.org/10.4236/anp.2016.51006 Yang Y, Ren S, Song X, Guo Y, Si D, Jing H, Ji M (2016) Sn@SnO2 attached on carbon spheres as additive-free electrode for high-performance pseudocapacitor. Electrochim Acta 209:350–359. https://doi.org/10.1016/j.electacta.2016.05.105 Dar F, Moonooswamy K, Es-Souni M (2013) Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res Lett 8(1):363. https://doi.org/10.1186/1556-276x-8-363 Li X, Xiong S, Li J, Bai J, Qian Y (2012) Mesoporous NiO ultrathin nanowire networks topotactically transformed from α-Ni(OH)2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment. J Mater Chem 22(28):14276. https://doi.org/10.1039/c2jm32559d Du D, Lan R, Humphreys J, Xu W, Xie K, Wang H, Tao S (2017) Synthesis of NiMoS4 for high-performance hybrid supercapacitors. J Electrochem Soc. https://doi.org/10.1149/2.0071713jes