Sn doped Hematite Nanorods for High-Performance Photoelectrochemical Water Splitting

Vietnam Journal of Catalysis and Adsorption - Tập 10 Số 1S - Trang 405-409 - 2021
Truong Thi Hien1, Vu Thi Bich2, Phan Thi Binh3, Mai Thi Thanh Thuy3, Man Minh Tan4, Nguyen Tien Dai5, Tran Thi Trang6, Chu Thi Thu Hien7, Chu Van Tuan8, Nguyen Thi Nguyet6
1Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi | Institute of Theoretical and Applied Research, Duy Tan University, Hanoi | Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang
2Institute of Theoretical and Applied Research, Duy Tan University, Hanoi | Faculty of Natural Sciences, Duy Tan University, Da Nang | Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi
3Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi
4Institute of Theoretical and Applied Research, Duy Tan University, Hanoi | Faculty of Natural Sciences, Duy Tan University, Da Nang
5Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi | Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang | Faculty of Natural Sciences, Duy Tan University, Da Nang
6Faculty of Chemical and Environmental Technology, Hung Yen University of Technology and Education, Khoai Chau, Hung Yen
7Department of Chemistry, Faculty of building materials, Ha Noi University of Civil Engineering, 55 Giai Phong, Dong Tam, Ha Noi
8Hung Yen University of Technology and Education, Khoai Chau, Hung Yen

Tóm tắt

Photoelectrochemical water splitting is of great attention due to its environmentally friendly generation of clean fuels. Hematite (α-Fe2O3) is considered a promising candidate due to its intrinsic properties for the high-performance photoelectrochemical electrode, such as favorable bandgap (2.0–2.2 eV), a suitable energy band position non-toxicity, low cost, and excellent chemical stability. Herein, we report about Sn-doped hematite nanorods and their implementation as photoanodes for photoelectrochemical water splitting. We provide the simple but efficient route to incorporate the Sn into the hematite without structural damage in the nanostructure and scrutinize the effect of Sn dopant on the photoelectrochemical activity of the hematite. Sn can be successfully incorporated into the hematite by the two-step heat treatment process, which reveals the enhanced photoelectrochemical responses compared with undoped hematite.  We elaborate on the effect of Sn dopant in the hematite on the photoelectrochemical activities, thereby suggesting the optimum concentration of Sn dopant. 

Từ khóa

#Photoelectrochemical Cell #Water Splitting #Hematite #Sn doping #Photoanode

Tài liệu tham khảo

M. Grätzel, Nature., 414 (2001) 338. https://doi.org/10.1038/35104607

J. Gan, X. Lu, Y. Tong, Nanoscale., 6 (2014) 7142-7164. https://doi.org/10.1039/c4nr01181c

M. Mishra, D.-M. Chun, Appl. Catal. A Gen., 498 (2015) 126-141. https://doi.org/10.1016/j.apcata.2015.03.023

J. Brillet, M. Gratzel, K. Sivula, Nano lett., 10 (2010) 4155-4160. https://doi.org/10.1021/nl102708c

M. Gaudon, N. Pailhé, J. Majimel, A. Wattiaux, J. Abel, A. Demourgues, J. Solid State Chem., 183 (2010) 2101-2109. https://doi.org/10.1016/j.jssc.2010.04.043

Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Nano Lett. 11 (2011) 2119-2125. https://doi.org/10.1021/nl200708y

Y. Ling, Y. Li, Part. Part. Syst. Char., 31 (2014) 1113-1121. https://doi.org/10.1002/ppsc.201400051

R.M. Guanjie Ai, H. Li, J. Zhong, Nanoscale. 7 (2015) 6722-6728. https://doi.org/10.1039/C5NR00863H

M. Li, Y. Yang, Y. Ling, W. Qiu, F. Wang, T. Liu, Y. Song, X. Liu, P. Fang, Y. Tong, Y. Li, Nano Lett. 17 (2017) 2490-2495. https://doi.org/10.1021/acs.nanolett.7b00184

H. Naono, K. Nakai, T. Sueyoshi, H. Yagi, J. Colloid Interface Sci. 120 (1987) 439-450. https://doi.org/10.1016/0021-9797(87)90370-5

N. D. Quang, T.T. Hien, N.D. Chinh, D. Kim, C. Kim, D. Kim, Electrochim. Acta. 295 (2019) 710-718. https://doi.org/10.1016/j.electacta.2018.11.008

L. Mei, L. Liao, Z. Wang, C. Xu, Adv. Mate. Sci. Eng., (2015) 1-10. https://doi.org/10.1155/2015/250836

H. Song, L. Zhang, C. He, Y. Qu, Y. Tian, Y. Lv, J. Mater. Chem. 21 (2011) 5972. https://doi.org/10.1039/C0JM04331A

N.T. Hahn, C.B. Mullins, Chem. Mater. 22 (2010) 6474-6482. https://doi.org/10.1021/cm1026078