Smoothing 4-manifolds
Tài liệu tham khảo
Bing, R.H.: An alternative proof that 3-manifolds can be triangulated. Ann. of Math.69, 37–65 (1959).
Milnor, J.: Differentiable structures. Mimeo. Princeton 1961.
Kirby, R.C., Siebenmann, L.C.: On the triangulation of manifolds and the Hauptvermutung. Bull. AMS,75, 742–749 (1969).
Lashof, R., Rothenberg, M.: Triangulation of manifolds I & II. Bull. AMS,75, 750–759 (1969). Also, Lashof, R., The immersion approach to triangulation and smoothing. To appear, Proc. Madison Conference on Algebraic Topology (AMS), 1970.
Shaneson, J.: Embeddings of spheres in spheres of codimension two andh-cobordisms ofS 1×S 3. Bull. AMS,75, 972–973 (1968).
Milnor, J.: Lectures on theh-cobordism theorem. Princeton Math. Notes, Princeton Univ. Press, Princeton, N.J. 1965.
Shaneson, J.: Non-simply connected surgery and some results in low dimensional topology. Comm. Math. Helv.45, 333–352 (1970).
Siebenmann, L.C.: The obstruction to finding a boundary for an open manifold. Ph. D. Thesis, Princeton Univ., Princeton, N.J. 1965.
Wall, C.T.C.: On simply connected 4-manifolds. J. London Math. Soc.39, 141–149 (1964).
— Diffeomorphisms of 4-manifolds. J. London Math. Soc.29, 131–140 (1964).
— On bundles over a sphere with a fibre euclidean space. Fund Math.LXI, 57–72 (1967).