Smooth points ofp-adic subanalytic sets

manuscripta mathematica - Tập 80 - Trang 45-71 - 1993
Zachary Robinson1
1Department of Mathematics Purdue University West Lafayette USA

Tóm tắt

Ap-adic subanalytic set shares with a real subanalytic set the fundamental property that its singular locus is itself subanalytic. Furthermore, given ap-adic subanalytic function ƒ with domain contained in ℤ , there is an integerL such that for any pointx 0 ∈ ℤ in a neighborhood of whichf is defined,f has a Taylor approximation up to orderL atx 0 if, and only if, ƒ is analytic aroundx 0. These results extend to thep-adic fields real variables theorems by M. Tamm [21].

Tài liệu tham khảo

Bartenwerfer, W.: Die Beschränktheit der Stückzahl der FasernK-analytischer Abbildungen. J. reine angew. Math.416, 49–70 (1991) Berger, R., Kiehl, R., Kunz, E. and Nastold, H-J.: Differentialrechnung in der analytischen Geometrie (Lecture Notes in Math., 38) Springer (1967) Bierstone, E. and Milman, P.: Semianalytic and subanalytic sets. Publ. Math. IHES67, 5–42 (1988) Bosch, S., Güntzer, U. and Remmert, R.: Non-Archimedean Analysis, Springer (1984) Bourbaki, N.: Algèbre, Masson (1981) Denef, J. and van den Dries, L.:p-adic and real subanalytic sets. Ann. Math.128, 79–138 (1988) Duncan, A. and O’Carroll, L.: A full uniform Artin-Rees Theorem. J. Reine Angew. Math.394, 203–207 (1989) Fresnel, J. and van der Put, M.: Géométrie Analytique Rigide et Applications, Birkhäuser (1981) Gabrielov, A.: Projections of semianalytic sets. Fuuct. Anal. and its Appl.2, 282–299 (1968) Gabrielov, A.: Formal relations between analytic functions. Math. USSR Izvestija7, 1056–1088 (1973) Hardt, R.: Stratification of real analytic mappings and images. Invent. Math.28, 193–208 (1975) Hironaka, H.: Subanalytic sets, in Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya 453–493 (1973) Lipshitz, L.: Isolated points on fibers of affinoid varieties. J. reine angew. Math.384, 208–220 (1988) Lipshitz, L.: Rigid subanalytic sets. Amer. J. Math.115, 77–108 (1993) Lojasiewicz, S.: Ensembles semi-analytiques, IHES (1965) Malgrange, B.: Frobenius avec singularités, 2. Le cas général. Invent. Math.39, 67-89 (1977) Matsumura, H.: Commutative ring theory, Cambridge University Press (1989) Schikhof, W.: Ultrametric calculus, Cambridge University Press (1984) Schoutens, H.: Approximation and subanalytic sets over a complete valuation ring, Ph.D. Thesis. Katholieke Universiteit Leuven (1991) Serre, J-P.: Lie Algebras and Lie Groups, 1964 lectures given at Harvard University, Benjamin Tamm, M.: Subanalytic sets in the calculus of variation. Acta Math.146, 167–199 (1981)