Smooth/non-smooth contact modeling of human crowds movement: numerical aspects and application to emergency evacuations
Tóm tắt
The aim of this paper is to develop on discrete models that reproduce the behavior of a crowd of people in several emergency evacuation situations. The first step in this study is to determine how to treat contacts between pedestrians. For that, three already existing discrete approaches, one smooth and two non-smooth, originally proposed to simulate the collisions of granular assemblies, are first analyzed both from the theoretical and the numerical point of view. The solving algorithms are presented and the numerical formulation of the two non-smooth approaches is compared to standard plasticity in order to point out the common theoretical framework. The next step is to adapt these discrete approaches to represent pedestrians. The key point is to introduce a “willingness” for each particle through a specific desired velocity. These adapted discrete approaches are able to handle local interactions, like pedestrian-pedestrian or pedestrian-obstacle contacts, in order to reproduce the global dynamic of pedestrian traffic. Finally, results of several simulations in emergency configurations are presented as well as compared to real exercise ones.
Tài liệu tham khảo
Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford
Bellomo N, Dogbé C (2008) On the modelling crowd dynamics from scalling to hyperbolic macroscopic models. Math Mod Meth Appl Sci 18:1317–1345
Bernicot F, Lefebvre-Lepot A (2010) Existence results for non-smooth second order differential inclusions, convergence result for a numerical scheme and application to the modelling of inelastic collisions. Confluent Math 2:445–471
Blue V, Adler J (2000) Cellular automata microsimulation of bi-directional pedestrian flows. J Transport Res Board 1678:135–141
Bodgi J, Erlicher S, Argoul P (2007) Lateral vibration of footbridges under crowd-loading: continuous crowd modelling approach. Key Eng Mater 347:685–690
Cholet C (1998) Chocs de solides rigides. PhD thesis, Université Paris VI
Cholet C (1999) Collision d’un point et d’un plan. Compte rendu de l’Académie des Sciences de Paris 328:455–458
Ciarlet P (1989) Introduction to numerical linear algebra and optimisation. Cambridge University Press, Cambridge
Cundall PA (1971) A computer model for simulating progressive large scale movements of blocky rock systems. In: Proceedings of the symposium of the international society of rock mechanics, vol 1, pp 132–150
Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65
Dal Pont S, Dimnet E (2006) A theory for multiple collisions of rigid solids and numerical simulation of granular flow. Int J Solids Struct 43/20:6100–6114
Dal Pont S, Dimnet E (2008) Theoretical approach to instantaneous collisions and numerical simulation of granular media using the A-CD2 method. Commun Appl Math Comput Sci Berkeley 3/1:1–24
Dimnet E (2002) Mouvement et collisions de solides rigides ou déformables. PhD thesis, Ecole Nationale des Ponts et Chaussées
Ericson C (2004) Real time collision detection. Morgan Haufmann Publishers, Los Altos
Frémond M (1995) Rigid bodies collisions. Phys Lett A 204:33–41
Frémond M (2007) Collisions. Edizioni del Dipartimento di Ingegneria Civile dell’ Universita di Roma Tor Vergata
Hankin BD, Wright RA (1958) Passenger flow in subways. Oper Res 9:81–88
Helbing D (2002) Traffic and related self-driven many-particle systems. Rev Modern Phys 73:1067–1141
Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282–4286
Helbing D, Farkas I, Vicsek T (2000) Simulating dynamic features of escape panic. Nature 407:487–490
Helbing D, Isobe M, Nagatani T, Takimoto K (2003) Lattice gas simulation of experimentally studied evacuation dynamics. Phys Rev E 67
Helbing D, Buzna L, Johansson A, Werner T (2005) Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transport Sci 39:1–24
Henderson LF (1971) The statistics of crowd fluids. Nature 229:381–383
Hoogendoorn SP, Bovy PHL, Daamen W (2001) Microscopic pedestrian wayfinding and dynamics modelling. Pedestrian Evacuat Dyn, pp 123–154
Hughes RL (2002) A continuum theory for the flow of pedestrians. Transport Res B Methodol 36:507–535
Hughes RL (2003) The flow of human crowds. Annu Rev Fluid Mech 35:169–182
Jean M (1999) The non smooth contact dynamics method. Compt Methods Appl Math Eng 177:235–257
Jean M, Moreau JJ (1992) Unilaterality and dry friction in the dynamics of rigid bodies collection. In: Contact mechanics international symposium, pp 31–48
Kimmel R, Sethian JA (1996) Fast marching methods for computing distance maps and shortest paths. Technical Report 669, CPAM, University of California, Berkeley
Kishino Y (1988) Disk model analysis of granular media. Micromech Granular Mater, pp 143–152
Klüpfel H (2003) A cellular automaton model for crowd movement and egress simulation. PhD thesis, Universitat Duisburg-Essen
Maury B (2006) A time-stepping scheme for inelastic collisions. Numer Math 102(4):649–679
Maury B, Venel J (2011) A discrete contact model for crowd motion. (ESAIM) Math Modell Numer Anal 45:145–168. doi:10.1051/m2an/2010035
Moreau J (1962) Décomposition orthogonale d’un espace hilbertien selon deux cones mutuellement polaires. C R Acad Sci Ser I 255:238–240
Moreau JJ (1970) Sur les lois du frottement, de la viscosité et de la plasticité. Comptes rendus de l’Académie des Sciences de Paris 271:608–611
Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Moreau J, Panagiotopoulos P-D (eds) Non smooth mechanics and applications, CISM Courses and Lectures, vol 302. Springer, Wien, pp 1–82
Moreau JJ (1994) Some numerical methods in multibody dynamics: application to granular materials. EurJMechA/Solids 13:93–114
Moussaïd M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4):e10047. doi:10.1371/journal.pone.0010047
Paoli L (2001) Time discretization of vibro-impact. Philos Trans R Soc A 359:2405–2428
Paris S, Pettré J, Donikian S (2007) Pedestrian reactive navigation for crowd simulation: a predictive approach. Comput Graph Forum 26(3):665–674
Pécol P, Dal Pont S, Erlicher S, Argoul P (2010) Modelling crowd-structure interaction. Mécanique Ind EDP Sci 11(6):495–504
Pécol P, Argoul P, Dal Pont S, Erlicher S (2011) The non smooth view for contact dynamics by Michel Frémond extended to the modeling of crowd movements. AIMS (submitted)
Pécol P, Dal Pont S, Erlicher S, Argoul P (2011) Discrete approaches for crowd movement modelling. Eur J Comput Mech 20(1–4):189–206
Piccoli B, Tosin A (2009) Pedestrian flows in bounded domains with obstacles. Continuum Mech Thermodyn 21:85–107
Piccoli B, Tosin A (2011) Time-evolving measures and macroscopic modeling of pedestrian flow. Arch Rational Mech Anal 199:707–738
Radjai F, Richefeu V (2009) Contact dynamics as a nonsmooth discrete element method. Mech Mater 41:715–728
Radjai F, Jean M, Moreau JJ, Roux S (1996) Force distributions in dense two-dimensional granular systems. Phys Rev Lett 77(2):264–277
Renouf M (2004) Optimisation numérique et calcul parallele pour l’étude des milieux divisés bi- et tridimensionnels. PhD thesis, Université Montpellier II—Sciences et Techniques du Languedoc
Reynolds C (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph 21:25–34
Saussine G, Cholet C, Gautier PE, Dubois F, Bohatier C, Moreau JJ (2006) Modelling ballast behaviour under dynamic loading. Part 1: A 2d polygonal discrete element method approach. Comput Methods Appl Mech Eng 195:2841–2859
Simo JC, Hughes TJR (1996) Elastoplasticity and viscoplasticity computational aspects. Springer, Berlin
Teknomo K (2006) Application of microscopic pedestrian simulation model. Transport Res F 9:15–27
Venel J (2008) Modélisation mathématique des mouvements de foule. PhD thesis, Laboratoire de Mathématiques, Université Paris XI, Orsay, France