Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations

Deepesh Toshniwal1, Hendrik Speleers2, Thomas J.R. Hughes1
1Institute for Computational Engineering and Sciences, University of Texas at Austin, USA
2Department of Mathematics, University of Rome ‘Tor Vergata’, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008

Bazilevs, 2012, Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput. Methods Appl. Mech. Engrg., 249, 28, 10.1016/j.cma.2012.03.028

Gómez, 2008, Isogeometric analysis of the Cahn–Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003

Scott, 2013, Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197, 10.1016/j.cma.2012.11.001

Wall, 2008, Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg., 197, 2976, 10.1016/j.cma.2008.01.025

Zhang, 2007, Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. Methods Appl. Mech. Engrg., 196, 2943, 10.1016/j.cma.2007.02.009

Peters, 2008

Prautzsch, 1998, Smoothness of subdivision surfaces at extraordinary points, Adv. Comput. Math., 9, 377, 10.1023/A:1018945708536

Stam, 1998, Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary parameter values, 395

Cirak, 2000, Subdivision surfaces: A new paradigm for thin-shell finite-element analysis, Internat. J. Numer. Methods Engrg., 47, 2039, 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1

Nguyen, 2014, A comparative study of several classical, discrete differential and isogeometric methods for solving Poisson’s equation on the disk, Axioms, 3, 280, 10.3390/axioms3020280

Riffnaller-Schiefer, 2016, Isogeometric shell analysis with NURBS compatible subdivision surfaces, Appl. Math. Comput., 272, 139, 10.1016/j.amc.2015.06.113

Karčiauskas, 2016, Generalizing bicubic splines for modeling and IGA with irregular layout, Comput. Aided Des., 70, 23, 10.1016/j.cad.2015.07.014

Karčiauskas, 2016, Minimal bi-6 G2 completion of bicubic spline surfaces, Comput. Aided Geom. Design, 41, 10, 10.1016/j.cagd.2015.10.005

Loop, 2004, Second order smoothness over extraordinary vertices, 165

Peters, 2000, Patching Catmull–Clark meshes, 255

Nguyen, 2016, Refinable C1 spline elements for irregular quad layout, Comput. Aided Geom. Design, 43, 123, 10.1016/j.cagd.2016.02.009

Deng, 2008, Polynomial splines over hierarchical T-meshes, Graph. Models, 70, 76, 10.1016/j.gmod.2008.03.001

Reif, 1997, A refineable space of smooth spline surfaces of arbitrary topological genus, J. Approx. Theory, 90, 174, 10.1006/jath.1996.3079

Bazilevs, 2010, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229, 10.1016/j.cma.2009.02.036

Li, 2014, Analysis-suitable T-splines: Characterization, refineability, and approximation, Math. Models Methods Appl. Sci., 24, 1141, 10.1142/S0218202513500796

Li, 2012, On linear independence of T-spline blending functions, Comput. Aided Geom. Design, 29, 63, 10.1016/j.cagd.2011.08.005

Yuan, 2017, Rectified unstructured T-splines with dynamic weighted refinement for improvement in geometric consistency and approximation convergence, Comput. Methods Appl. Mech. Engrg., 316, 373, 10.1016/j.cma.2016.07.025

Loop, 2008, Approximating Catmull–Clark subdivision surfaces with bicubic patches, ACM Trans. Graph., 27, 10.1145/1330511.1330519

Reif, 1995, A unified approach to subdivision algorithms near extraordinary vertices, Comput. Aided Geom. Design, 12, 153, 10.1016/0167-8396(94)00007-F

Prautzsch, 1997, Freeform splines, Comput. Aided Geom. Design, 14, 201, 10.1016/S0167-8396(96)00029-5

Reif, 1996, A degree estimate for subdivision surfaces of higher regularity, Proc. Amer. Math. Soc., 124, 2167, 10.1090/S0002-9939-96-03366-7

Sederberg, 1998, Non-uniform recursive subdivision surfaces, 387

Cashman, 2009, NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes, ACM Trans. Graph., 28, 10.1145/1531326.1531352

Cashman, 2009, A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines, Comput. Aided Geom. Design, 26, 94, 10.1016/j.cagd.2007.12.001

Cirak, 2001, Fully C1-conforming subdivision elements for finite deformation thin-shell analysis, Internat. J. Numer. Methods Engrg., 51, 813, 10.1002/nme.182.abs

Wei, 2015, Truncated hierarchical Catmull–Clark subdivision with local refinement, Comput. Methods Appl. Mech. Engrg., 291, 1, 10.1016/j.cma.2015.03.019

Loop, 2008, G2 tensor product splines over extraordinary vertices, Comput. Graph. Forum, 27, 1373, 10.1111/j.1467-8659.2008.01277.x

Groisser, 2015, Matched Gk-constructions always yield Ck-continuous isogeometric elements, Comput. Aided Geom. Design, 34, 67, 10.1016/j.cagd.2015.02.002

Nguyen, 2016, C1 finite elements on non-tensor-product 2d and 3d manifolds, Appl. Math. Comput., 272, 148

Collin, 2016, Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces, Comput. Aided Geom. Design, 47, 93, 10.1016/j.cagd.2016.05.009

Kapl, 2015, Isogeometric analysis with geometrically continuous functions on two-patch geometries, Comput. Math. Appl., 70, 1518, 10.1016/j.camwa.2015.04.004

Li, 2015, Some properties for analysis-suitable T-splines, J. Comput. Math., 33, 428, 10.4208/jcm.1504-m4493

Wei, 2017, Truncated T-splines: Fundamentals and methods, Comput. Methods Appl. Mech. Engrg., 316, 349, 10.1016/j.cma.2016.07.020

Wu, 2017, Hermite type spline spaces over rectangular meshes with complex topological structures, Commun. Comput. Phys., 21, 835, 10.4208/cicp.OA-2016-0030

Grimm, 1995, Modeling surfaces of arbitrary topology using manifolds, 359

Navau, 2000, Modeling surfaces from meshes of arbitrary topology, Comput. Aided Geom. Design, 17, 643, 10.1016/S0167-8396(00)00020-0

Ying, 2004, A simple manifold-based construction of surfaces of arbitrary smoothness, ACM Trans. Graph., 23, 271, 10.1145/1015706.1015714

Majeed, 2017, Isogeometric analysis using manifold-based smooth basis functions, Comput. Methods Appl. Mech. Engrg., 316, 547, 10.1016/j.cma.2016.08.013

Sangalli, 2016, Unstructured spline spaces for isogeometric analysis based on spline manifolds, Comput. Aided Geom. Design, 47, 61, 10.1016/j.cagd.2016.05.004

G. Beer, B. Marussig, J. Zechner, C. Dünser, T. Fries, Boundary element analysis with trimmed NURBS and a generalized IGA approach, in: E. Oñate, X. Oliver, A. Huerta (Eds.), 11th World Congress on Computational Mechanics, 2014, pp. 2445–2456.

Marussig, 2015, Fast isogeometric boundary element method based on independent field approximation, Comput. Methods Appl. Mech. Engrg., 284, 458, 10.1016/j.cma.2014.09.035

E. Atroshchenko, G. Xu, S. Tomar, S. Bordas, Weakening the tight coupling between geometry and simulation in isogeometric analysis: From sub- and super-geometric analysis to Geometry Independent Field approximaTion (GIFT), arXiv preprint arXiv:1706.06371, 2017.

Scott, 2012, Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213, 206, 10.1016/j.cma.2011.11.022

Zhang, 2015, On the linear independence and partition of unity of arbitrary degree analysis-suitable T-splines, Commun. Math. Statist., 3, 353, 10.1007/s40304-015-0064-z

Scott, 2011, Isogeometric finite element data structures based on Bézier extraction of T-splines, Internat. J. Numer. Methods Engrg., 88, 126, 10.1002/nme.3167

Borden, 2011, Isogeometric finite element data structures based on Bézier extraction of NURBS, Internat. J. Numer. Methods Engrg., 87, 15, 10.1002/nme.2968

Bohl, 1997, Degenerate Bézier patches with continuous curvature, Comput. Aided Geom. Design, 14, 749, 10.1016/S0167-8396(97)00005-8

Cottrell, 2009

Hughes, 2017

SurfLab: surface gallery, http://www.cise.ufl.edu/research/SurfLab/shape_gallery.shtml.

Kapl, 2017, Space of C2-smooth geometrically continuous isogeometric functions on two-patch geometries, Comput. Math. Appl., 73, 37, 10.1016/j.camwa.2016.10.014

Nguyen-Thanh, 2011, Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg., 200, 3410, 10.1016/j.cma.2011.08.014

Bartezzaghi, 2015, Isogeometric analysis of high order partial differential equations on surfaces, Comput. Methods Appl. Mech. Engrg., 295, 446, 10.1016/j.cma.2015.07.018

Liu, 2013, Isogeometric analysis of the advective Cahn–Hilliard equation: Spinodal decomposition under shear flow, J. Comput. Phys., 242, 321, 10.1016/j.jcp.2013.02.008

Reif, 1998, TURBS — topologically unrestricted rational B-splines, Constr. Approx., 14, 57, 10.1007/s003659900063

Sederberg, 2011, Curvature of singular Bézier curves and surfaces, Comput. Aided Geom. Design, 28, 233, 10.1016/j.cagd.2011.03.004

Dokken, 2013, Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 331, 10.1016/j.cagd.2012.12.005

Giannelli, 2012, THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29, 485, 10.1016/j.cagd.2012.03.025

Toshniwal, 2017, Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 316, 1005, 10.1016/j.cma.2016.11.009