SmiDCA: An Anti-Smishing Model with Machine Learning Approach

Computer Journal - Tập 61 Số 8 - Trang 1143-1157 - 2018
Gunikhan Sonowal1, K. S. Kuppusamy1
1Department of Computer Science, Pondicherry University, Puducherry, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Michael, 2016

Statisticbrain, 2017

Silva, 2017, Towards filtering undesired short text messages using an online learning approach with semantic indexing, Expert Syst. Appl., 83, 314, 10.1016/j.eswa.2017.04.055

Hong, 2018, Cnn-based malicious user detection in social networks, Concurr. Comput. Pract. Exp., 30, e4163-n/a, 10.1002/cpe.4163

Mun, 2016, Blackhole attack: user identity and password seize attack using honeypot, J. Comput. Virol. Hacking Tech., 12, 185, 10.1007/s11416-016-0270-6

Sonowal, 2017

McAfee, 2012

genisyscu, 2017

Hiremath, 2016, Cellular network fraud & security, jamming attack and defenses, Proc. Comput. Sci., 78, 233, 10.1016/j.procs.2016.02.038

Clxcommunications, 2016

Delany, 2012, Sms spam filtering: methods and data, Expert Syst. Appl., 39, 9899, 10.1016/j.eswa.2012.02.053

Baglia, 2015

Canova, 2015

Kang, 2014, Advances in Computer Science and its Applications, 467, 10.1007/978-3-642-41674-3_66

Shahriar, 2015, Mobile phishing attacks and mitigation techniques, J. Inf. Secur., 6, 206

Moon, 2016, Forensic analysis of mers smishing hacking attacks and prevention, Int. J. Secur. Appl., 10, 181

Mahmoud, 2012, Sms spam filtering technique based on artificial immune system, IJCSI Int. J. Comput. Sci. Issues, 9, 589

Belabed, 2012

Kang, 2007

Sharifi, 2008

Prakash, 2010

Gastellier-Prevost, 2011

Cao, 2008

Mohammad, 2014, Intelligent rule-based phishing websites classification, IET Inf. Secur., 8, 153, 10.1049/iet-ifs.2013.0202

Sonowal, 2017, Phidma—a phishing detection model with multi-filter approach, J. King Saud Univ. Comput. Inf. Sci., 29, 1

Banu, 2013, A comprehensive study of phishing attacks, Int. J. Comput. Sci. Inf. Technol., 4, 783

Kang, 2016, Improving security awareness about smishing through experiment on the optimistic bias on risk perception, J. Korea Inst. Inf. Secur. Cryptology, 26, 475, 10.13089/JKIISC.2016.26.2.475

Baslyman, 2016

Mun, 2017, Secure short url generation method that recognizes risk of target url, Wireless Pers. Commun., 93, 269, 10.1007/s11277-016-3866-8

Baek, 2017, Advanced Multimedia and Ubiquitous Engineering, 67, 10.1007/978-981-10-5041-1_12

Nair, 2013, Disributed System for Smishing Detection

Lee, 2016, Advanced Multimedia and Ubiquitous Engineering, 495, 10.1007/978-3-662-47895-0_60

Foozy, 2013, Phishing detection taxonomy for mobile device, Int. J. Comput. Sci. Issues (IJCSI), 10, 338

Pandey, 2012

Joo, 2017, S-detector: an enhanced security model for detecting smishing attack for mobile computing, Telecommun. Syst., 66, 1, 10.1007/s11235-016-0269-9

El-Alfy, 2017, Detection of phishing websites based on probabilistic neural networks and k-medoids clustering, Comput. J., 60, 1, 10.1093/comjnl/bxx035

Pinterest, 2017

Shams, 2013

Han, 2016

Smith, 1967

Flesch, 1948, A new readability yardstick, J. Appl. Psychol., 32, 221, 10.1037/h0057532

Gunning, 1952, The Technique of Clear Writing

Mc Laughlin, 1969, Smog grading – a new readability formula, J. Read., 12, 639

Coleman, 1975, A computer readability formula designed for machine scoring, J. Appl. Psychol., 60, 283, 10.1037/h0076540

Bird, 2009, Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit

Bird, 2004

Duman, 2016

Keretna, 2013

Akinyelu, 2014, Classification of phishing email using random forest machine learning technique, J. Appl. Math., 2014, 6, 10.1155/2014/425731

Abu-Nimeh, 2007

Ho, 1995

Basnet, 2010

Toolan, 2009

Fette, 2007

Huang, 2012, A svm-based technique to detect phishing urls, Inf. Technol. J., 11, 921, 10.3923/itj.2012.921.925

Yearwood, 2010

Islam, 2013, A multi-tier phishing detection and filtering approach, J. Netw. Comput. Appl., 36, 324, 10.1016/j.jnca.2012.05.009

Ramanathan, 2012, phishgillnet—phishing detection methodology using probabilistic latent semantic analysis, adaboost, and co-training, EURASIP J. Inf. Secur., 2012, 1, 10.1186/1687-417X-2012-1

Ramanathan, 2013, Phishing detection and impersonated entity discovery using conditional random field and latent dirichlet allocation, Comput. Secur., 34, 123, 10.1016/j.cose.2012.12.002

Benesty, 2009, Pearson Correlation Coefficient. Noise Reduction in Speech Processing, 1

Inomata, 2005

Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157

Guyon, 2006, An Introduction to Feature Extraction. Feature Extraction: Foundations and Applications, 10.1007/978-3-540-35488-8

Almeida, 2017

Yadav, 2011

Mohd, 2015, Advanced Computer and Communication Engineering Technology, 821, 10.1007/978-3-319-07674-4_77

Hassan, 2015, On determining the most effective subset of features for detecting phishing websites, Int. J. Comput. Appl., 122, 1

Wang, 2006, Feature selection algorithm in email classification, Jisuanji Gongcheng yu Yingyong (Comput. Eng. Appl.), 42, 122