SmiDCA: An Anti-Smishing Model with Machine Learning Approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Michael, 2016
Statisticbrain, 2017
Silva, 2017, Towards filtering undesired short text messages using an online learning approach with semantic indexing, Expert Syst. Appl., 83, 314, 10.1016/j.eswa.2017.04.055
Hong, 2018, Cnn-based malicious user detection in social networks, Concurr. Comput. Pract. Exp., 30, e4163-n/a, 10.1002/cpe.4163
Mun, 2016, Blackhole attack: user identity and password seize attack using honeypot, J. Comput. Virol. Hacking Tech., 12, 185, 10.1007/s11416-016-0270-6
Sonowal, 2017
McAfee, 2012
genisyscu, 2017
Hiremath, 2016, Cellular network fraud & security, jamming attack and defenses, Proc. Comput. Sci., 78, 233, 10.1016/j.procs.2016.02.038
Clxcommunications, 2016
Delany, 2012, Sms spam filtering: methods and data, Expert Syst. Appl., 39, 9899, 10.1016/j.eswa.2012.02.053
Baglia, 2015
Canova, 2015
Shahriar, 2015, Mobile phishing attacks and mitigation techniques, J. Inf. Secur., 6, 206
Moon, 2016, Forensic analysis of mers smishing hacking attacks and prevention, Int. J. Secur. Appl., 10, 181
Mahmoud, 2012, Sms spam filtering technique based on artificial immune system, IJCSI Int. J. Comput. Sci. Issues, 9, 589
Belabed, 2012
Kang, 2007
Sharifi, 2008
Prakash, 2010
Gastellier-Prevost, 2011
Cao, 2008
Mohammad, 2014, Intelligent rule-based phishing websites classification, IET Inf. Secur., 8, 153, 10.1049/iet-ifs.2013.0202
Sonowal, 2017, Phidma—a phishing detection model with multi-filter approach, J. King Saud Univ. Comput. Inf. Sci., 29, 1
Banu, 2013, A comprehensive study of phishing attacks, Int. J. Comput. Sci. Inf. Technol., 4, 783
Kang, 2016, Improving security awareness about smishing through experiment on the optimistic bias on risk perception, J. Korea Inst. Inf. Secur. Cryptology, 26, 475, 10.13089/JKIISC.2016.26.2.475
Baslyman, 2016
Mun, 2017, Secure short url generation method that recognizes risk of target url, Wireless Pers. Commun., 93, 269, 10.1007/s11277-016-3866-8
Nair, 2013, Disributed System for Smishing Detection
Foozy, 2013, Phishing detection taxonomy for mobile device, Int. J. Comput. Sci. Issues (IJCSI), 10, 338
Pandey, 2012
Joo, 2017, S-detector: an enhanced security model for detecting smishing attack for mobile computing, Telecommun. Syst., 66, 1, 10.1007/s11235-016-0269-9
El-Alfy, 2017, Detection of phishing websites based on probabilistic neural networks and k-medoids clustering, Comput. J., 60, 1, 10.1093/comjnl/bxx035
Pinterest, 2017
Shams, 2013
Han, 2016
Smith, 1967
Gunning, 1952, The Technique of Clear Writing
Mc Laughlin, 1969, Smog grading – a new readability formula, J. Read., 12, 639
Coleman, 1975, A computer readability formula designed for machine scoring, J. Appl. Psychol., 60, 283, 10.1037/h0076540
Bird, 2009, Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit
Bird, 2004
Duman, 2016
Keretna, 2013
Akinyelu, 2014, Classification of phishing email using random forest machine learning technique, J. Appl. Math., 2014, 6, 10.1155/2014/425731
Abu-Nimeh, 2007
Ho, 1995
Basnet, 2010
Toolan, 2009
Fette, 2007
Huang, 2012, A svm-based technique to detect phishing urls, Inf. Technol. J., 11, 921, 10.3923/itj.2012.921.925
Yearwood, 2010
Islam, 2013, A multi-tier phishing detection and filtering approach, J. Netw. Comput. Appl., 36, 324, 10.1016/j.jnca.2012.05.009
Ramanathan, 2012, phishgillnet—phishing detection methodology using probabilistic latent semantic analysis, adaboost, and co-training, EURASIP J. Inf. Secur., 2012, 1, 10.1186/1687-417X-2012-1
Ramanathan, 2013, Phishing detection and impersonated entity discovery using conditional random field and latent dirichlet allocation, Comput. Secur., 34, 123, 10.1016/j.cose.2012.12.002
Benesty, 2009, Pearson Correlation Coefficient. Noise Reduction in Speech Processing, 1
Inomata, 2005
Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157
Guyon, 2006, An Introduction to Feature Extraction. Feature Extraction: Foundations and Applications, 10.1007/978-3-540-35488-8
Almeida, 2017
Yadav, 2011
Mohd, 2015, Advanced Computer and Communication Engineering Technology, 821, 10.1007/978-3-319-07674-4_77
Hassan, 2015, On determining the most effective subset of features for detecting phishing websites, Int. J. Comput. Appl., 122, 1
Wang, 2006, Feature selection algorithm in email classification, Jisuanji Gongcheng yu Yingyong (Comput. Eng. Appl.), 42, 122