Smeared multiscale finite element model for electrophysiology and ionic transport in biological tissue
Tài liệu tham khảo
Hodkin, 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500, 10.1113/jphysiol.1952.sp004764
Noble, 1962, A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials, J. Physiol., 160, 317, 10.1113/jphysiol.1962.sp006849
Baer, 1991, Propagation of dendritic spikes mediated by excitable spines: a continuum theory, J. Neurophysiol., 65, 874, 10.1152/jn.1991.65.4.874
Decker, 2009, Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium, Am. J. Physiol. Heart Circ. Physiol., 296, H1017, 10.1152/ajpheart.01216.2008
O'Hara, 2011, Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation, PLoS Comput. Biol., 7, 10.1371/journal.pcbi.1002061
Ijiri, 2008, A procedural method for modeling the Purkinje fibers of the heart, J. Physiol. Sci., 58, 481, 10.2170/physiolsci.RP003208
Hall, 2016
Born, 2005
Keener, 2009
Winslow, 1992, Theoretical foundations of neural modeling, BME 580.681
Clayton, 2008, A guide to modelling cardiac electrical activity in anatomically detailed ventricles, Prog. Bioph. Mol. Biol., 96, 19, 10.1016/j.pbiomolbio.2007.07.004
Lafortune, 2012, Coupled electromechanical model of the heart: parallel finite element formulation, Int. J. Numer. Meth. Biomed. Eng., 28, 72, 10.1002/cnm.1494
Dal, 2013, A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Methods Appl. Mech. Eng., 253, 323, 10.1016/j.cma.2012.07.004
Rocha, 2011, A macro finite element formulation for cardiac electrophysiology simulations using hybrid unstructured grids, IEEE Trans. Biomed. Eng., 58, 1055, 10.1109/TBME.2010.2064167
Kojic, 2017, Extension of the composite smeared finite element (CSFE) to include lymphatic system in modeling mass transport in capillary systems and biological tissue, J. Serb. Soc. Comp. Mech., 11, 108, 10.24874/jsscm.2017.11.02.09
Milosevic, 2018, Correction function for accuracy improvement of the Composite Smeared Finite Element for diffusive transport in biological tissue systems, Comp. Meth. Appl. Mech. Eng., 10.1016/j.cma.2018.04.012
Kojic, 2018, Multiscale smeared finite element model for mass transport in biological tissue: from blood vessels to cells and cellular organelles, Comput. Biol. Med., 99, 7, 10.1016/j.compbiomed.2018.05.022
Kojic, 2017, A composite smeared finite element for mass transport in capillary systems and biological tissue, Comp. Meth. Appl. Mech. Eng., 324, 413, 10.1016/j.cma.2017.06.019
Kojic, 2018, Smeared concept as a general methodology in finite element modeling of physical fields and mechanical problems in composite media, J. Serb. Soc. Comp. Mech., 12, 1, 10.24874/jsscm.2018.12.02.01
Kim, 2010, Changes in the calcium current among different transmural regions contributes to action potential heterogeneity in rat heart, Prog. Biophys. Mol. Biol., 103, 28, 10.1016/j.pbiomolbio.2010.05.004
Hunter, 1998, Modelling the mechanical properties of cardiac muscle, Prog. Biophys. Mol. Biol., 69, 289, 10.1016/S0079-6107(98)00013-3
Santiago, 2018
Mijailovich, 2010, Derivation of a finite-element model of lingual deformation during swallowing from the mechanics of mesoscale myofiber tracts obtained by MRI, J. Appl. Physiol., 109, 1500, 10.1152/japplphysiol.00493.2010
Schaff, 1997, A general computational framework for modeling cellular structure and function, Biophys. J., 73, 1135, 10.1016/S0006-3495(97)78146-3
Trapp, 2005, A predictive model for the selective accumulation of chemicals in tumor cells, Eur. Biophys. J., 34, 959, 10.1007/s00249-005-0472-1
Kojic, 2008
Kojic, 2008
Bathe, 1996
Kojic, 2005
Milosevic, 2018, A computational model for drug release from PLGA implant, Materials, 11, 2416, 10.3390/ma11122416
Boyle, 2007, Behaviour of the purkinje system during defibrillation-strength shocks, 419
Zhang, 2006, A cell-based molecular transport simulator for pharmacokinetic prediction and cheminformatic exploration, Mol. Pharm., 3, 704, 10.1021/mp060046k
Kojic, 2010
Clayton, 2011, Models of cardiac tissue electrophysiology: progress,challenges and open questions, Prog. Biophys. Mol. Biol., 104, 22, 10.1016/j.pbiomolbio.2010.05.008
Cooper, 2011, Considerations for the use of cellular electrophysiology models within cardiac tissue simulations, Prog. Biophys. Mol. Biol., 107, 74, 10.1016/j.pbiomolbio.2011.06.002
Bernabeu, 2009, CHASTE: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library, Phil. Trans. R. Soc. A, 367, 1907, 10.1098/rsta.2008.0309
Roth, 1986, A bidomain model for the extracellular potential and magnetic field of cardiac tissue, IEEE Trans. Biomed. Eng., 33, 467, 10.1109/TBME.1986.325804
Henriquez, 1993, Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Eng., 21, 1
Henriques, 1996, Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model, J. Cardiov. Electrophysiol., 7, 424, 10.1111/j.1540-8167.1996.tb00548.x
Keener, 1996, A biophysical modelfor defibrillation of cardiac tissue, Biophys. J., 71, 1335, 10.1016/S0006-3495(96)79333-5
Corrias, 2012, Modelling tissue electrophysiology with multiple cell types: applications of the extended bidomain framework, Integr. Biol., 4, 192, 10.1039/c2ib00100d
Kojic, 2014, A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure, Comput. Methods Appl. Mech. Eng., 269, 123, 10.1016/j.cma.2013.11.010
Vigmond, 2016, Modeling our understanding of the His-Purkinje system, Prog. Biophys. Mol. Biol., 120, 179, 10.1016/j.pbiomolbio.2015.12.013
Bordas, 2012, A bidomain model of the ventricular specialized conduction system of the heart, SIAM J. Appl. Math., 72, 1618, 10.1137/11082796X
Bruce, 2014, Modelling the effect of gap junctions on tissue-level cardiac electrophysiology, Bull. Math. Biol., 76, 431, 10.1007/s11538-013-9927-1
Cheng, 2010, Numerical analysis of Ca2+ signaling in rat ventricular myocytes with realistic transverse-axial tubular geometry and inhibited sarcoplasmic reticulum, PLoS Comput. Biol., 6, 10.1371/journal.pcbi.1000972
Yu, 2011, Multiscale modeling of calcium dynamics in ventricular myocytes with realistic transverse tubules, IEEE Trans. Biomed. Eng., 58, 2947, 10.1109/TBME.2011.2158316
Walker, 2014, Superresolution modeling of calcium release in the heart, Bioph. J., 107, 3018, 10.1016/j.bpj.2014.11.003
Kekenes-Huskey, 2012, Modeling effects of L-type Ca2+ current and Na+-Ca2+ exchanger on Ca2+ trigger flux in rabbit myocytes with realistic t-tubule geometries, Comp. Phys. Med., 3, 1
Schaff, 1997, A general computational framework for modeling cellular structure and function, Biophys. J., 73, 1135, 10.1016/S0006-3495(97)78146-3
Cherry, 2003, Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method, Chaos, 13, 853, 10.1063/1.1594685
Vigmond, 2002, Computational techniques for solving the bidomain equations in three dimensions, IEEE Trans. Biomed. Eng., 49, 1260, 10.1109/TBME.2002.804597
Pathmanathan, 2010, A numerical guide to the solution of the bidomain equations of cardiac electrophysiology, Prog. Biophys. Mol. Biol., 102, 136, 10.1016/j.pbiomolbio.2010.05.006
Whiteley, 2006, An efficient numerical technique for the solution of the monodomain and bidomain equations, IEEE Trans. Biomed. Eng., 53, 2139, 10.1109/TBME.2006.879425
Vigmond, 2008, Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Biol., 96, 3, 10.1016/j.pbiomolbio.2007.07.012
Xavier, 2009, Multi-level parallelism for the cardiac bidomain equations, Int. J. Parallel. Prog., 37, 572, 10.1007/s10766-009-0110-0
Whiteley, 2007, Physiology driven adaptivity for the numerical solution of the bidomain equations, Ann. Biomed. Eng., 35, 1510, 10.1007/s10439-007-9337-3
Bordas, 2009, Simulation of cardiac electrophysiology on next-generation high-performance computers, Phil. Trans. R. Soc. A, 367, 1951, 10.1098/rsta.2008.0298
Southern, 2009, Solving the coupled system improves computational efficiency of the bidomain equations, IEEE Trans. Biomed. Eng., 56, 2404, 10.1109/TBME.2009.2022548
Qu, 2014, Nonlinear and stochastic dynamics in the heart, Phys. Rep., 543, 61, 10.1016/j.physrep.2014.05.002
Dal, 2013, A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Methods Appl. Mech. Eng., 253, 323, 10.1016/j.cma.2012.07.004
Berberoglu, 2014, Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions, Eur. J. Mech. Solids, 48, 60, 10.1016/j.euromechsol.2014.02.021
Kojic, 2019
Mijailovich, 2016, Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice, J. General Physiol., 148, 459, 10.1085/jgp.201611608
Pathmanathan, 2018, Validation and trustworthiness of multiscale models of cardiac electrophysiology, Front. Physiol., 9, 10.3389/fphys.2018.00106
Gray, 2018, Patient-specific cardiovascular computational modeling: diversity of personalization and challenges, J. Cardiov. Translat. Res., 11, 80, 10.1007/s12265-018-9792-2
Pathmanathan, 2011, The significant effect of the choice of ionic current integration method in cardiac electro-physiological simulations, Int. J. Numer. Meth. Biomed. Eng., 27, 1751, 10.1002/cnm.1438