Smeared multiscale finite element model for electrophysiology and ionic transport in biological tissue

Computers in Biology and Medicine - Tập 108 - Trang 288-304 - 2019
M. Kojic1,2,3, M. Milosevic2,4, V. Simic2, V. Geroski2, A. Ziemys1, N. Filipovic5, M. Ferrari1
1Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX, 77030, USA
2Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia
3Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
4Belgrade Metropolitan University, Tadeuša Košćuška 63, 11000, Belgrade, Serbia
5University of Kragujevac, Faculty for Engineering Sciences, Sestre Janic 6, 34000, Kragujevac, Serbia

Tài liệu tham khảo

Hodkin, 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500, 10.1113/jphysiol.1952.sp004764 Noble, 1962, A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials, J. Physiol., 160, 317, 10.1113/jphysiol.1962.sp006849 Baer, 1991, Propagation of dendritic spikes mediated by excitable spines: a continuum theory, J. Neurophysiol., 65, 874, 10.1152/jn.1991.65.4.874 Decker, 2009, Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium, Am. J. Physiol. Heart Circ. Physiol., 296, H1017, 10.1152/ajpheart.01216.2008 O'Hara, 2011, Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation, PLoS Comput. Biol., 7, 10.1371/journal.pcbi.1002061 Ijiri, 2008, A procedural method for modeling the Purkinje fibers of the heart, J. Physiol. Sci., 58, 481, 10.2170/physiolsci.RP003208 Hall, 2016 Born, 2005 Keener, 2009 Winslow, 1992, Theoretical foundations of neural modeling, BME 580.681 Clayton, 2008, A guide to modelling cardiac electrical activity in anatomically detailed ventricles, Prog. Bioph. Mol. Biol., 96, 19, 10.1016/j.pbiomolbio.2007.07.004 Lafortune, 2012, Coupled electromechanical model of the heart: parallel finite element formulation, Int. J. Numer. Meth. Biomed. Eng., 28, 72, 10.1002/cnm.1494 Dal, 2013, A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Methods Appl. Mech. Eng., 253, 323, 10.1016/j.cma.2012.07.004 Rocha, 2011, A macro finite element formulation for cardiac electrophysiology simulations using hybrid unstructured grids, IEEE Trans. Biomed. Eng., 58, 1055, 10.1109/TBME.2010.2064167 Kojic, 2017, Extension of the composite smeared finite element (CSFE) to include lymphatic system in modeling mass transport in capillary systems and biological tissue, J. Serb. Soc. Comp. Mech., 11, 108, 10.24874/jsscm.2017.11.02.09 Milosevic, 2018, Correction function for accuracy improvement of the Composite Smeared Finite Element for diffusive transport in biological tissue systems, Comp. Meth. Appl. Mech. Eng., 10.1016/j.cma.2018.04.012 Kojic, 2018, Multiscale smeared finite element model for mass transport in biological tissue: from blood vessels to cells and cellular organelles, Comput. Biol. Med., 99, 7, 10.1016/j.compbiomed.2018.05.022 Kojic, 2017, A composite smeared finite element for mass transport in capillary systems and biological tissue, Comp. Meth. Appl. Mech. Eng., 324, 413, 10.1016/j.cma.2017.06.019 Kojic, 2018, Smeared concept as a general methodology in finite element modeling of physical fields and mechanical problems in composite media, J. Serb. Soc. Comp. Mech., 12, 1, 10.24874/jsscm.2018.12.02.01 Kim, 2010, Changes in the calcium current among different transmural regions contributes to action potential heterogeneity in rat heart, Prog. Biophys. Mol. Biol., 103, 28, 10.1016/j.pbiomolbio.2010.05.004 Hunter, 1998, Modelling the mechanical properties of cardiac muscle, Prog. Biophys. Mol. Biol., 69, 289, 10.1016/S0079-6107(98)00013-3 Santiago, 2018 Mijailovich, 2010, Derivation of a finite-element model of lingual deformation during swallowing from the mechanics of mesoscale myofiber tracts obtained by MRI, J. Appl. Physiol., 109, 1500, 10.1152/japplphysiol.00493.2010 Schaff, 1997, A general computational framework for modeling cellular structure and function, Biophys. J., 73, 1135, 10.1016/S0006-3495(97)78146-3 Trapp, 2005, A predictive model for the selective accumulation of chemicals in tumor cells, Eur. Biophys. J., 34, 959, 10.1007/s00249-005-0472-1 Kojic, 2008 Kojic, 2008 Bathe, 1996 Kojic, 2005 Milosevic, 2018, A computational model for drug release from PLGA implant, Materials, 11, 2416, 10.3390/ma11122416 Boyle, 2007, Behaviour of the purkinje system during defibrillation-strength shocks, 419 Zhang, 2006, A cell-based molecular transport simulator for pharmacokinetic prediction and cheminformatic exploration, Mol. Pharm., 3, 704, 10.1021/mp060046k Kojic, 2010 Clayton, 2011, Models of cardiac tissue electrophysiology: progress,challenges and open questions, Prog. Biophys. Mol. Biol., 104, 22, 10.1016/j.pbiomolbio.2010.05.008 Cooper, 2011, Considerations for the use of cellular electrophysiology models within cardiac tissue simulations, Prog. Biophys. Mol. Biol., 107, 74, 10.1016/j.pbiomolbio.2011.06.002 Bernabeu, 2009, CHASTE: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library, Phil. Trans. R. Soc. A, 367, 1907, 10.1098/rsta.2008.0309 Roth, 1986, A bidomain model for the extracellular potential and magnetic field of cardiac tissue, IEEE Trans. Biomed. Eng., 33, 467, 10.1109/TBME.1986.325804 Henriquez, 1993, Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Eng., 21, 1 Henriques, 1996, Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model, J. Cardiov. Electrophysiol., 7, 424, 10.1111/j.1540-8167.1996.tb00548.x Keener, 1996, A biophysical modelfor defibrillation of cardiac tissue, Biophys. J., 71, 1335, 10.1016/S0006-3495(96)79333-5 Corrias, 2012, Modelling tissue electrophysiology with multiple cell types: applications of the extended bidomain framework, Integr. Biol., 4, 192, 10.1039/c2ib00100d Kojic, 2014, A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure, Comput. Methods Appl. Mech. Eng., 269, 123, 10.1016/j.cma.2013.11.010 Vigmond, 2016, Modeling our understanding of the His-Purkinje system, Prog. Biophys. Mol. Biol., 120, 179, 10.1016/j.pbiomolbio.2015.12.013 Bordas, 2012, A bidomain model of the ventricular specialized conduction system of the heart, SIAM J. Appl. Math., 72, 1618, 10.1137/11082796X Bruce, 2014, Modelling the effect of gap junctions on tissue-level cardiac electrophysiology, Bull. Math. Biol., 76, 431, 10.1007/s11538-013-9927-1 Cheng, 2010, Numerical analysis of Ca2+ signaling in rat ventricular myocytes with realistic transverse-axial tubular geometry and inhibited sarcoplasmic reticulum, PLoS Comput. Biol., 6, 10.1371/journal.pcbi.1000972 Yu, 2011, Multiscale modeling of calcium dynamics in ventricular myocytes with realistic transverse tubules, IEEE Trans. Biomed. Eng., 58, 2947, 10.1109/TBME.2011.2158316 Walker, 2014, Superresolution modeling of calcium release in the heart, Bioph. J., 107, 3018, 10.1016/j.bpj.2014.11.003 Kekenes-Huskey, 2012, Modeling effects of L-type Ca2+ current and Na+-Ca2+ exchanger on Ca2+ trigger flux in rabbit myocytes with realistic t-tubule geometries, Comp. Phys. Med., 3, 1 Schaff, 1997, A general computational framework for modeling cellular structure and function, Biophys. J., 73, 1135, 10.1016/S0006-3495(97)78146-3 Cherry, 2003, Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method, Chaos, 13, 853, 10.1063/1.1594685 Vigmond, 2002, Computational techniques for solving the bidomain equations in three dimensions, IEEE Trans. Biomed. Eng., 49, 1260, 10.1109/TBME.2002.804597 Pathmanathan, 2010, A numerical guide to the solution of the bidomain equations of cardiac electrophysiology, Prog. Biophys. Mol. Biol., 102, 136, 10.1016/j.pbiomolbio.2010.05.006 Whiteley, 2006, An efficient numerical technique for the solution of the monodomain and bidomain equations, IEEE Trans. Biomed. Eng., 53, 2139, 10.1109/TBME.2006.879425 Vigmond, 2008, Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Biol., 96, 3, 10.1016/j.pbiomolbio.2007.07.012 Xavier, 2009, Multi-level parallelism for the cardiac bidomain equations, Int. J. Parallel. Prog., 37, 572, 10.1007/s10766-009-0110-0 Whiteley, 2007, Physiology driven adaptivity for the numerical solution of the bidomain equations, Ann. Biomed. Eng., 35, 1510, 10.1007/s10439-007-9337-3 Bordas, 2009, Simulation of cardiac electrophysiology on next-generation high-performance computers, Phil. Trans. R. Soc. A, 367, 1951, 10.1098/rsta.2008.0298 Southern, 2009, Solving the coupled system improves computational efficiency of the bidomain equations, IEEE Trans. Biomed. Eng., 56, 2404, 10.1109/TBME.2009.2022548 Qu, 2014, Nonlinear and stochastic dynamics in the heart, Phys. Rep., 543, 61, 10.1016/j.physrep.2014.05.002 Dal, 2013, A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Methods Appl. Mech. Eng., 253, 323, 10.1016/j.cma.2012.07.004 Berberoglu, 2014, Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions, Eur. J. Mech. Solids, 48, 60, 10.1016/j.euromechsol.2014.02.021 Kojic, 2019 Mijailovich, 2016, Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice, J. General Physiol., 148, 459, 10.1085/jgp.201611608 Pathmanathan, 2018, Validation and trustworthiness of multiscale models of cardiac electrophysiology, Front. Physiol., 9, 10.3389/fphys.2018.00106 Gray, 2018, Patient-specific cardiovascular computational modeling: diversity of personalization and challenges, J. Cardiov. Translat. Res., 11, 80, 10.1007/s12265-018-9792-2 Pathmanathan, 2011, The significant effect of the choice of ionic current integration method in cardiac electro-physiological simulations, Int. J. Numer. Meth. Biomed. Eng., 27, 1751, 10.1002/cnm.1438