Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come

Marco Di Renzo1, Mérouane Debbah2, Dinh-Thuy Phan-Huy3, Alessio Zappone4, Mohamed‐Slim Alouini5, Chau Yuen6, Vincenzo Sciancalepore7, George C. Alexandropoulos8, Jakob Hoydis9, Haris Gačanin10, Julien de Rosny11, Ahcène Bounceur12, Geoffroy Lerosey13, Mathias Fink11
1Laboratoire des Signaux et Systèmes, CNRS, CentraleSupelec, Univ Paris-Sud, Université Paris-Saclay, Plateau de Saclay, Gif-sur-Yvette, 91192, France
2Mathematical and Algorithmic Sciences Lab, Huawei France R&D, 20 Quai du Point du Jour, Boulogne-Billancourt, 92100, France
3Orange Labs, 44 avenue de la Republique, Chatillon, 92326, France
4Laboratoire des Signaux et Systèmes, CentraleSupelec, LANES Group, Plateau de Saclay, Gif-sur-Yvette, 91192, France
5King Abdullah University of Science and Technology (KAUST), Mail Box 1282, Thuwal, 23955-6900, Kingdom of Saudi Arabia
6Singapore University of Technology and Design (SUTD), 8 Somapah Rd, Singapore 487372, Singapore
7NEC Laboratories Europe, Kurfursten-Anlage, 36, Heidelberg, 69115, Germany
8National and Kapodistrian University of Athens, Panepistimiopolis Ilissia, Athens, 15784, Greece
9Nokia Bell Labs, 7 Route de Villejust, Nozay, 91620, France
10Nokia Bell Labs, Copernicuslaan 50, Antwerp, 2018, Belgium
11Institut Langevin, ESPCI Paris, 1 rue Jussieu, Paris, 75238, France
12University of Brest, 20, Avenue Victor Le Gorgeu, 29238, 29238, France
13Greenerwave, 6 Rue Jean Calvin, Paris, 75005, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

P. Hu, P. Zhang, M. Rostami, D. Ganesan, Braidio: an integrated active-passive radio for mobile devices with asymmetric energy budgets (ACM SIGCOMM, Florianopolis, 2016). https://dl.acm.org/citation.cfm?id=2934902 .

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, I. F. Akyildiz, in IEEE International Symposium on a World of Wireless. Realizing Wireless Communication Through Software-Defined HyperSurface Environments (Mobile and Multimedia NetworksCrete, 2018).

A. Gati, et al., in IEEE Communications Surveys & Tutorials, submitted for journal publication. Key Technologies to Accelerate the ICT Green Evolution: An Operator’s Point of View, (2018). https://arxiv.org/abs/1903.09627 .

A. Welkie, L. Shangguan, J. Gummeson, W. Hu, K. Jamieson, Programmable radio environments for smart spaces (ACM Workshop on Hot Topics in Networks, Palo Alto, 2017). https://dl.acm.org/citation.cfm?id=3152456 .

5GPPP Vision on Software Networks and 5G SN WG (2017). https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP_SoftNets_WG_whitepaper_v20.pdf .

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, I. F. Akyildiz, A New Wireless Communication Paradigm Through Software-Controlled Metasurfaces. IEEE Commun. Mag.56(9), 162–169 (2018).

L. Subrt, P. Pechac, Controlling propagation environments using intelligent Walls (European Conference on Antennas and Propagation, Prague, 2012).

L. Subrt, P. Pechac, Intelligent Walls as Autonomous Parts of Smart Indoor Environments. IET Commun.6(8), 1004–1010 (2012).

X. Tan, Z. Sun, J. M. Jornet, D. Pados, Increasing Indoor Spectrum Sharing Capacity using Smart Reflect-Array (IEEE International Conference on Communications, Kuala Lumpur, 2016).

O. Abari, D. Bharadia, A. Duffield, D. Katabi, Enabling high-quality untethered virtual reality (USENIX Symposium on Networked Systems Design and Implementation, Boston, 2017).

X. Tan, Z. Sun, D. Koutsonikolas, K. M. Jornet, Enabling indoor mobile millimeter-Wave Networks Based on Smart Reflect-Arrays (IEEE Conference on Computer Communications, Honolulu, 2018).

R. Chandra, K. Winstein, Programmable radio environments for smart spaces - HotNets-XVI Dialogue (ACM Workshop on Hot Topics in Networks, Palo Alto, 2017). https://conferences.sigcomm.org/hotnets/2017/dialogues/dialogue118.pdf .

S. Hu, F. Rusek, O. Edfors, Beyond Massive MIMO: The potential of data transmission with large intelligent surfaces. IEEE. Trans. Sig. Process.66(10), 2746–2758 (2018).

C. Liaskos, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, I. F. Akyildiz, Using any surface to realize a new paradigm for wireless communications. Commun. ACM. 61(11), 30–33 (2018).

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. -P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 334(6054), 333–337 (2011).

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Har, J. Booth, D. R. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag.54(2), 10–35 (2012).

N. Kaina, M. Dupre’, G. Lerosey, M. Fink, Shaping complex microwave fields in reverberating media with binary tunable metasurfaces. Sci. Rep.4(Article ID 6693) (2014). https://www.nature.com/articles/srep06693 .

N. Kaina, M. Dupre’, G. Lerosey, M. Fink, Hybridized resonances to design tunable binary phase metasurface unit cells. Opt. Express. 22(16), 18881–18888 (2014).

M. Dupre’, P. del Hougne, M. Fink, F. Lemoult, G. Lerosey, Wave-field shaping in cavities: waves trapped in a box with controllable boundaries. Phys. Rev. Lett.115(1) (2015). Article ID 017701. https://www.ncbi.nlm.nih.gov/pubmed/26182120 .

P. del Hougne, M. Fink, G. Lerosey, Optimally diverse communication channels in disordered environments with tuned randomness. Nat. Electron.2(1) (2019). Article ID 36. https://www.nature.com/articles/s41928-018-0190-1 .

L. Spada, Metamaterials for Advanced Sensing Platforms. Res. J. Opt. Photon.1(1) (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359273/ .

T. Nakanishi, T. Otani, Y. Tamayama, M. Kitano, Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency. Phys. Rev. B. 87:, 161110 (2013).

P. del Hougne, G. Lerosey, Leveraging chaos for wave-based analog computation: demonstration with indoor wireless communication signals. Phys. Reviex X. 8(4), 041037 (2018).

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Performing mathematical operations with metamaterials. 343(6167), 160–163 (2014).

C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, I. Akyildiz, A novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systems. Elsevier Ad Hoc Netw.87:, 16 (2019). https://arxiv.org/pdf/1812.07096.pdf .

A. Tsioliaridou, C. Liaskos, S. Ioannidis, Towards a Circular Economy via Intelligent Metamaterials (IEEE International Conference on Computer-Aided Modeling Analysis and Design of Communication Links and Networks, Barcelona, 2018).

H, 2020 VISORSURF project, A hardware platform for software-driven functional metasurfaces. http://www.visorsurf.eu/ .

N. Bonod, Large-Scale Dielectric Metasurfaces. Nat. Mater.14:, 664–665 (2015).

K. Achouri, M. A. Salem, C. Caloz, General metasurface synthesis based on susceptibility tensors. IEEE Trans. Antennas Propag.63(7), 2977–2991 (2015).

Y. Vahabzadeh, N. Chamanara, K. Achouri, C. Caloz, Computational analysis of metasurfaces. IEEE J. Multiscale Multiphysics Comput. Tech.3:, 37–49 (2018).

G. Lavigne, K. Achouri, V. S. Asadchy, S. A. Tretyakov, C. Caloz, Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction. IEEE Trans. Antennas Propag.66(3), 1321–1330 (2018).

F. Liu, A. Pitilakis, M. S. Mirmoosa, O. Tsilipakos, X. Wang, A. C. Tasolamprou, S. Abadal, A. Cabellos-Aparicio, E. Alarcon, C. Liaskos, N. V. Kantartzis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, S. Tretyakov, Programmable Metasurfaces: State of the art and Prospects (IEEE International Symposium on Circuits and Systems, Florence, 2018). https://ieeexplore.ieee.org/document/8351817 .

K. Wu, P. Coquet, Q. J. Wang, P. Genevet, Modelling of free-form conformal metasurfaces. Nat. Commun.9: (2018). Article No. 3494. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113266/ .

N. A. Tsioliaridou, C. K. Liaskos, A. Pitsillides, S. A. Ioannidis, A Novel Protocol for Network-Controlled Metasurfaces (ACM International Conference on Nanoscale Computing and Communication, Washington DC, 2017).

A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, M. Fink, Taking advantage of multiple scattering to communicate with time reversal antennas. Phys. Rev. Lett.90:, 014301 (2003).

D. -H. Phan-Huy, T. Sarrebourse, A. Gati, J. Wiart, M. Helard, Characterization of the confidentiality of a green time reversal communication system: experimental measurement of the spy BER Sink. IEEE Wirel. Commun. Netw. Conf., 4783–4788 (2013).

S. Narayanan, M. Di Renzo, F. Graziosi, H. Haas, Distributed spatial modulation: a cooperative diversity protocol for half-duplex relay-aided wireless networks. IEEE Trans. Veh. Technol.65(5), 2947–2964 (2016).

C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J.27(3), 379–423 (1948).

N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine (Hermann & Cie and Cambridge Massachusetts (MIT Press), 1948). ISBN 978-0-262-73009-9. https://ieeexplore.ieee.org/document/1593093 .

H. Claussen, L. T. W. Ho, H. R. Karimi, F. J. Mullany, L. G. Samuel, I, Base Station: Cognisant Robots and Future Wireless Access Networks (IEEE Consumer Communications and Networking Conference, Las Vegas, 2006).

H. Claussen, Autonomous self-deployment of wireless access networks. Bell Labs Tech. J.14(1), 55–71 (2009).

S. Singh, H. S. Dhillon, J. G. Andrews, Offloading in heterogeneous networks: modeling, analysis, and design Insights. IEEE Trans, Wirel. Commun.12(5), 2484–2497 (2013).

J. G. Andrews, X. Zhang, G. D. Durgin, A. K. Gupta, Are we approaching the fundamental limits of wireless network Densification?. IEEE Commun. Mag.54(10), 184–190 (2016).

M. Di Renzo, A. Zappone, T. T. Lam, M. Debbah, System-level modeling and optimization of the energy efficiency in cellular networks—a stochastic geometry framework. IEEE Trans. Wirel. Commun.17(4), 2539–2556 (2018).

C. Mollen, High-end performance with low-end hardware: analysis of massive MIMO base station transceivers, Doctoral Thesis (Linkoping University, Sweden, 2017).

R. W. Heath Jr., N. Gonzalez-Prelcic, S. Rangan, W. Roh, A. Sayeed, An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Top. Sig. Process.10(3), 43–453 (2016).

J. G. Andrews, T. Bai, M. N. Kulkarni, A. Alkhateeb, A. K. Gupta, R. W. Heath Jr., Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun.65(1), 403–430 (2017).

W. Lu, M. Di Renzo, Stochastic geometry modeling and system-level analysis and optimization of relay-aided downlink cellular networks. IEEE Trans. Commun.63(11), 4063–4085 (2015).

A. Shojaeifard, K. -K. Wong, M. D. Renzo, G. Zheng, K. A. Hamdi, J. Tang, Massive MIMO-enabled full-duplex cellular networks. IEEE Trans. Commun.65(11), 4734–4750 (2017).

D. -H. Kwon, S. A. Tretyakov, Arbitrary beam control using passive lossless metasurfaces enabled by orthogonally polarized custom surface waves. Phys. Rev. B. 97(3) (2018).

S. Abadal, C. Liaskos, A. Tsioliaridou, S. Ioannidis, A. Pitsillides, J. Sole-Pareta, E. Alarcon, A. Cabellos-Aparicio, Computing and communications for the software-defined metamaterial paradigm: a context analysis. IEEE Access. 5:, 6225–6235 (2017).

H. Claussen, Autonomous self-deployment of wireless access networks in an airport environment, autonomic communication, lecture notes in computer science (LNCS). Springer. 3854:, 86–98 (2006). https://pdfs.semanticscholar.org/dad9/8df1687144a6f5666b9091493fb080117707.pdf .

S. Hu, F. Rusek, O. Edfors, Beyond massive MIMO: the potential of positioning with large intelligent surfaces. IEEE Trans. Sig. Process.66(7), 1761–1774 (2018).

M. Jung, W. Saad, Y. Jang, G. Kong, S. Choi, Performance analysis of large intelligence surfaces (LISs): Asymptotic Data Rate and Channel Hardening Effects submitted (2018). https://arxiv.org/abs/1810.05667v1 .

C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, C. Yuen, Large intelligent surfaces for energy efficiency in wireless Communication submitted (2018). https://arxiv.org/abs/1810.06934 .

C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, C. Yuen, Energy efficient multi-user MISO communication using low resolution large intelligent surfaces submitted (2018). https://arxiv.org/abs/1809.05397 .

Q. Wu, R. Zhang, Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming submitted (2018). https://arxiv.org/abs/1810.03961 .

Q. Wu, R. Zhang, Beamforming optimization for intelligent reflecting surface with discrete phase shifts submitted (2018). https://arxiv.org/abs/1810.10718 .

Q. -U. -A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, M. -S. Alouini, Large Intelligent Surface Assisted Massive MIMO Communications submitted (2019). https://128.84.21.199/pdf/1903.08127.pdf .

A. K. Khandani, Media-based modulation: a new approach to wireless transmission (IEEE International Symposium on Information Theory, Istanbul, 2013).

A. K. Khandani, Media-based modulation: converting static Rayleigh fading to AWGN (IEEE International Symposium on Information Theory, Honolulu, 2014).

A. K. Khandani, Media-based modulation: improving spectral efficiency beyond conventional MIMO (IEEE Communications Theory Workshop, Nafplio, 2016). Available: http://ctw2016.ieee-ctw.org/slides/ctw16_Khandani.pdf .

A. Kalis, A. G. Kanatas, C. B. Papadias, A novel approach to MIMO transmission using a single RF front end. IEEE J. Sel. Areas Commun.26(6), 972–980 (2008).

M. Di Renzo, H. Haas, P. Grant, Spatial modulation for multiple-antenna wireless systems - A Survey. IEEE Commun. Mag.49(12), 182–191 (2011).

M. Di Renzo, H. Haas, A. Ghrayeb, L. Hanzo, Spatial modulation for generalized MIMO: challenges, opportunities and implementation. Proc. IEEE. 102(1), 56–103 (2014).

M. A. Sedaghat, V. Barousis, R. R. Muller, C. B. Papadias, Load modulated arrays: a low-complexity antenna. IEEE Commun. Mag.54(3), 46–52 (2016).

E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, H. Haas, Index modulation techniques for next-generation wireless networks. IEEE Access. 5:, 16693–16746 (2017).

Y. Li, B. Liang, Z. -M. Gu, X. -Y. Zou, J. -C. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic Metasurfaces. Nat. Sci. Rep.3: (2013). Article No. 2546.

A. Pors, S. I. Bozhevolnyi, Plasmonic metasurfaces for efficient phase control in reflection. Opt. Express. 21(22), 27438–27451 (2013). https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-22-27438 .

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, T. J. Cui, Terahertz Broadband low-reflection metasurface by controlling phase distributions. Adv. Opt. Mater.3(10), 1405–1410 (2015).

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, G. Shvets, Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces. Nano Lett.16(6), 3607–3615 (2016).

J. Cheng, S. Inampudi, H. Mosallaei, Design of phase gradient coding metasurfaces for broadband Wave modulating. Nature Scientific Reports. 7: (2017). Article No. 12228.

A. Diaz-Rubio, V. Asadchy, A. Elsakka, S. Tretyakov, Metasurfaces for Perfect Control of Reflection (International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications, Athens, 2017). https://ieeexplore.ieee.org/document/7915281/ .

F. Ding, A. Pors, S. I. Bozhevolnyi, Gradient metasurfaces: a review of fundamentals and applications. Rep. Prog. Phys.81(2) (2017). https://www.nature.com/articles/s41467-018-03778-9 .

J. Li, C. Shen, A. Diaz-Rubio, S. A. Tretyakov, S. A. Cummer, Systematic design and experimental demonstration of Bianisotropic Metasurfaces for Scattering-Free Manipulation of Acoustic Wavefronts. Nat. Commun.9: (2018). Article No. 1342. https://www.nature.com/articles/s41467-018-03778-9 .

K. M. Kossifos, M. A. Antoniades, J. Georgiou, A. H. Jaafar, N. T. Kemp, An optically-programmable absorbing metasurface (International Symposium on Circuits and Systems, Florence, 2018). https://ieeexplore.ieee.org/document/8351874/ .

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, X. Zhang, An ultrathin invisibility skin cloak for visible light. Science. 349(6254), 1310–1314 (2015).

L. Y. Hsu, T. Lepetit, B. Kante’, Extremely thin dielectric metasurface for carpet cloaking. Prog. Electromagn. Res.152:, 33–40 (2015).

H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Nat. Light: Sci. Appl.7: (2018). Article No. 50.

V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Diaz-Rubio, Y. Radi, S. A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B. 94(7) (2016). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.075142 .

R. Pestourie, C. Perez-Arancibia, Z. Lin, W. Shin, F. Capasso, S. G. Johnson, Inverse design of large-area metasurfaces submitted (2018). https://arxiv.org/abs/1808.04215 .

S. Colburn, Dielectric metasurface optics: a new platform for compact optical sensing (University of Washington, 2017). https://digital.lib.washington.edu/researchworks/handle/1773/40037 .

T. Nakanishia, M. Kitano, Storage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterial. Appl. Phys. Lett.112(20) (2018).

F. Zangeneh-Nejad, R. Fleury, Performing mathematical operations using high-index acoustic metamaterials. New J. Phys.20: (2018).

M. W. Matthes, P. del Hougne, J. de Rosny, G. Lerosey, S. M. Popoff, Turning optical complex media into universal reconfigurable linear operators by wavefront shaping submitted (2018). https://arxiv.org/abs/1810.05688 .

P. Popovski, K. F. Trillingsgaard, O. Simeone, G. Durisi, 5G wireless network slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View. IEEE Access. 6:, 55765–55779 (2018).

T. Saeed, C. Skitsas, D. Kouzapas, M. Lestas, V. Soteriou, A. Philippou, S. Abadal, C. Liaskos, L. Petrou, J. Georgiou, A. Pitsillides, Fault Adaptive Routing in Metasurface Controller Networks (International Workshop on Network on Chip Architectures, Fukuoka, 2018).

A. C. Tasolamprou, M. S. Mirmoosa, O. Tsilipakos, A. Pitilakis, F. Liu, S. Abadal, A. Cabellos-Aparicio, E. Alarcon, C. Liaskos, N. V. Kantartzis, S. Tretyakov, M. Kafesaki, E. N. Economou, C. M. Soukoulis, Intercell Wireless Communication in Software-Defined Metasurfaces (IEEE International Symposium on Circuits and Systems, Florence, 2018).

L. Petrou, P. Karousios, J. Georgiou, Asynchronous circuits as an enabler of scalable and programmable metasurfaces (International Symposium on Circuits and Systems, Florence, 2018).

S. Abadal, A. Mestres, J. Torrellas, E. Alarcon, A. Cabellos-Aparicio, Medium access control in wireless network-on-chip: a context analysis. IEEE Commun. Mag.56(6), 172–178 (2018).

P. Kouvaros, D. Kouzapas, A. Philippou, J. Georgiou, L. Petrou, A. Pitsillides, Formal verification of a programmable hypersurface (International Conference on Formal Methods for Industrial Critical Systems, Ireland, 2018).

J. Y. H. Teo, L. J. Wong, C. Molardi, P. Genevet, Controlling electromagnetic fields at boundaries of arbitrary geometries. Phys. Rev. A. 94: (2016). Article No. 023820.

M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, M. Franceschetti, Stochastic geometry and random graphs for the analysis and design of wireless Networks. IEEE J. Sel. Areas Commun.27(7), 1029–1046 (2009).

N. Campbell, The study of discontinuous phenomena. Math. Proc. Cambridge Philos. Soc.15:, 117–136 (1909).

S. Musa, W. Wasylkiwskyj, Co-channel interference of spread spectrum systems in a multiple user environment. IEEE Trans. Commun.26(10), 1405–1413 (1978).

E. S. Sousa, J. A. Silvester, Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. IEEE J. Sel. Areas Commun.8(5), 762–71 (1990).

E. S. Sousa, Interference modeling in a direct-sequence spread spectrum packet radio network. IEEE Trans. Commun.38(9), 1475–1482 (1990).

E. S. Sousa, Performance of a spread spectrum packet radio network link on a Poisson field of interferers. IEEE Trans. Inf. Theory. 38(6), 1743–1754 (1992).

F. Baccelli, M. Klein, M. Lebourges, S. A. Zuyev, Stochastic geometry and architecture of communication networks. Telecommun. Syst.7(1-3), 209–227 (1997).

P. Fleming, A. L. Stolyar, B. Simon, Closed-Form Expressions for Other-Cell Interference in Cellular CDMA Technical Report (University of Colorado, Boulder, 1997). http://ccm.ucdenver.edu/reports/rep116.pdf .

T. X. Brown, Cellular performance bounds via shotgun cellular systems. IEEE J. Sel. Areas Commun.18(11), 2443–2455 (2000).

J. G. Andrews, R. K. Ganti, M. Haenggi, N. Jindal, S. Weber, A primer on spatial modeling and analysis in wireless networks. IEEE Commun. Mag.48(11), 156–163 (2010).

R. K. Ganti, M. Haenggi, Interference and outage in clustered wireless ad hoc networks. IEEE Trans. Inf. Theory. 55(9), 4067–4086 (2009).

S. P. Weber, X. Yang, J. G. Andrews, G. De Veciana, Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Trans. Inf. Theory. 51(12), 4091–4102 (2005).

S. Weber, J. G. Andrews, N. Jindal, An overview of the transmission capacity of wireless networks. IEEE Trans. Inf. Theory. 58(12), 3593–3604 (2010).

S. Weber, J. G. Andrews, Transmission capacity of wireless networks. Found. Trends. Netw.5(2-3), 109–281 (2011).

F. Baccelli, B. Blaszczyszyn, P. Muhlethaler, An aloha protocol for multihop mobile wireless networks. IEEE Trans. Inf. Theory. 52(2), 421–436 (2006).

F. Baccelli, P. Muhlethaler, B. Blaszczyszyn, Stochastic analysis of spatial and opportunistic aloha. IEEE J. Sel. Areas Commun.27(7), 1105–1119 (2009).

J. G. Andrews, F. Baccelli, R. K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun.59(11), 3122–3134 (2011).

H. S. Dhillon, R. K. Ganti, F. Baccelli, J. G. Andrews, Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun.30(3), 550–560 (2012).

H. El-Sawy, E. Hossain, M. Haenggi, Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun. Surv. Tutor.15(3), 996–1019 (2013).

H. ElSawy, A. K. Sultan-Salem, M. -S. Alouini, M. Z. Win, Modeling and analysis of cellular networks using stochastic geometry: a tutorial. Proc. IEEE. 19(1), 167–203 (2017).

J. Schloemann, H. S. Dhillon, R. M. Buehrer, Toward a tractable analysis of localization fundamentals in cellular networks. IEEE Trans. Wirel. Commun.15(3), 1768–1782 (2016).

C. E. O’Lone, H. S. Dhillon, R. M. Buehrer, A statistical characterization of localization performance in wireless networks. IEEE Trans. Wirel. Commun.17(9), 5841–5856 (2018).

S. Aditya, H. S. Dhillon, A. F. Molisch, H. Behairy, A tractable analysis of the blind spot probability in localization networks under correlated blocking. IEEE Trans. Wirel. Commun. (2018). to appear, https://arxiv.org/pdf/1801.08560.pdf .

E. Bastug, M. Bennis, M. Kountouris, M. Debbah, Cache-enabled small cell networks: modeling and tradeoffs. EURASIP J. Wirel. Commun. Netw.41: (2015). https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-015-0250-4 .

M. Emara, H. Elsawy, S. Sorour, S. Al-Ghadhban, M. -S. Alouini, T. Y. Al-Naffouri, Optimal caching in 5G networks with opportunistic spectrum access. IEEE Trans. Wirel. Commun.17(8), 4447–4461 (2018).

H. -B. Kong, I. Flint, P. Wang, D. Niyato, N. Privault, Fog radio access networks: Ginibre point process modeling and analysis. IEEE Trans. Wirel. Commun.17(7), 5564–5580 (2018).

A. Agarwal, A. K. Jagannatham, Distributed estimation in homogenous Poisson wireless sensor networks. IEEE Wirel. Commun. Lett.3(1), 90–93 (2014).

G. Pastor, I. Norros, R. Jantti, A. J. Caamano, Compressive Data Aggregation from Poisson Point Process Observations (IEEE International Symposium on Wireless Communication Systems, Brussels, 2015).

S. A. Aldalahmeh, M. Ghogho, Des McLernon, E. Nurellari, Optimal fusion rule for distributed detection in clustered wireless sensor networks. EURASIP J. Adv. Sig. Process.5: (2016). https://asp-eurasipjournals.springeropen.com/articles/10.1186/s13634-016-0303-9 .

Network Motion (NEMO), ERC-2017-ADG - ERC Advanced Grant (2019). https://cordis.europa.eu/project/rcn/214933_fr.html .

T. Bai, R. Vaze, R. W. Heath Jr., Analysis of blockage effects on urban cellular networks. IEEE Trans. Wirel. Commun.13(9), 5070–5083 (2014).

T. Bai, R. W. Heath Jr., Coverage and rate analysis for millimeter wave cellular networks. IEEE Trans. Wirel. Commun.14(2), 1100–1114 (2015).

M. Di Renzo, Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks. IEEE Trans. Wirel. Commun.14(9), 5038–5057 (2015).

M. Ding, P. Wang, D. Lopez-Perez, G. Mao, Z. Lin, Performance impact of LoS and NLoS transmissions in dense cellular networks. IEEE Trans. Wirel. Commun.15(3), 2365–2380 (2016).

M. Di Renzo, W. Lu, P. Guan, The intensity matching approach: a tractable stochastic geometry approximation to system-level analysis of cellular networks. IEEE Trans. Wirel. Commun.15(9), 5963–5983 (2016).

M. Ding, D. Lopez-Perez, H. Claussen, M. A. Kaafar, On the fundamental characteristics of ultra-dense small cell networks. IEEE Netw.32(3), 92–100 (2018).

A. Narayanan, S. T. Veetil, R. K. Ganti, Coverage analysis in millimeter wave cellular networks with reflections (IEEE Global Communications Conference, Singapore, 2017).

M. Di Renzo, J. Song, Reflection probability in wireless networks with metasurface-coated environmental objects: an approach Based on Random Spatial Processes. EURASIP J. Wirel. Commun. Netw. (2019). (to appear) https://arxiv.org/abs/1901.01046 .

A. K. Gupta, J. G. Andrews, Jr. Heath R.W., Macrodiversity in cellular networks with Random Blockages. IEEE Trans. Wirel. Commun.17(2), 996–1010 (2018).

F. Baccelli, X. Zhang, A Correlated Shadowing Model for Urban Wireless Networks (IEEE International Conference on Computer Communications, Hong Kong, 2015).

X. Zhang, F. Baccelli, R. W. Heath Jr., An indoor correlated shadowing model (IEEE Global Communications Conference, San Diego, 2015).

J. Lee, X. Zhang, F. Baccelli, A 3-D spatial model for in-building wireless networks with correlated shadowing. IEEE Trans. Wirel. Commun.15(11), 7778–7793 (2016).

J. Lee, F. Baccelli, On the effect of shadowing correlation on wireless network performance (IEEE International Conference on Computer Communications, Honolulu, 2018).

A. Guo, M. Haenggi, Spatial stochastic models and metrics for the structure of base stations in cellular networks. IEEE Trans. Wirel. Commun.12(11), 5800–5812 (2013).

N. Deng, W. Zhou, M. Haenggi, The Ginibre point process as a model for wireless networks with repulsion. IEEE Trans. Wirel. Commun.14(1), 107–121 (2015).

Y. Li, F. Baccelli, H. Dhillon, J. G. Andrews, Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes. IEEE Trans. Commun.63(9), 3405–3422 (2015).

J. Kibilda, B. Galkin, L. A. DaSilva, Modelling multi-operator base station deployment patterns in cellular networks. IEEE Trans. Mob. Comput.15(12), 3087–3099 (2016).

C. -S. Choi, J. O. Woo, J. G. Andrews, An analytical framework for modeling a spatially repulsive cellular network. IEEE Trans. Commun.66(2), 862–874 (2018).

M. Haenggi, The mean interference-to-signal ratio and its key role in cellular and amorphous networks. IEEE Wirel. Commun. Lett.3(6), 597–600 (2014).

A. Guo, M. Haenggi, Asymptotic deployment gain: a simple approach to characterize the SINR distribution in general cellular networks. IEEE Trans. Commun.63(3), 962–976 (2015).

R. K. Ganti, M. Haenggi, Asymptotics and approximation of the SIR distribution in general cellular networks. IEEE Trans. Wirel. Commun.15(3), 2130–2143 (2016).

Y. Takahashi, Y. Chen, T. Kobayashi, N. Miyoshi, Simple and fast PPP-based approximation of SIR distributions in downlink cellular networks. IEEE Wirel. Commun. Lett.7(6), 898–901 (2018).

M. Di Renzo, S. Wang, X. Xi, Modeling and analysis of cellular networks by using inhomogeneous Poisson point processes. IEEE Trans. Wirel. Commun.17(8), 5162–5182 (2018).

M. Di Renzo, T. T. Lam, A. Zappone, M. Debbah, A tractable closed-form expression of the coverage probability in Poisson cellular networks. IEEE Wirel. Commun. Lett. (2018). to appear, https://10.1109/LWC.2018.2868753 ( https://ieeexplore.ieee.org/document/8454463 ).

M. Di Renzo, A. Zappone, T. T. Lam, M. Debbah, Spectral-energy efficiency Pareto front in cellular networks: a stochastic geometry framework. IEEE Wirel. Commun. Lett. (2018). to appear, https://10.1109/LWC.2018.2874642 ( https://ieeexplore.ieee.org/document/8486640 ).

V. Sciancalepore, M. Di Renzo, X. Costa-Perez, STORNS: Stochastic radio access network slicing IEEE International Conference on Communications (ICC),(submitted) (2019). https://arxiv.org/abs/1901.05336 .

C. Xu, L. Yang, P. Zhang, Practical backscatter communication systems for battery-free Internet of Things: a tutorial and survey of recent research. IEEE Sig. Process. Mag.35(5), 16–27 (2018).

J. Zhao, W. Gong, J. Liu, Spatial stream backscatter using commodity WiFi. ACM MobiSys (2018). https://dl.acm.org/citation.cfm?id=3210240.3210329 .

M. Di Renzo, Spatial Modulation Based on Reconfigurable Antennas - A New Air Interface for the IoT (IEEE Military Communications Conference, Baltimore, 2017).

D. -T. Phan-Huy, Y. Kokar, K. Rachedi, P. Pajusco, A. Mokh, T. Magounaki, R. Masood, C. Buey, P. Ratajczak, N. Malhouroux-Gaffet, J. -M. Conrat, J. C. Prevotet, A. Ourir, J. de Rosny, M. Crussiere, M. Helard, A. Gati, T. Sarrebourse, M. Di Renzo, Single-carrier spatial modulation for the Internet of Things: design and performance evaluation by using real compact and reconfigurable antenna. IEEE Access (2019). accepted, to appear, https://arxiv.org/abs/1812.07514 .

D. Nguyen Viet, M. Di Renzo, V. Basavarajappa, B. Bedia Exposito, J. Basterrechea, D. -T. Phan-Huy, Spatial modulation based on reconfigurable antennas: performance evaluation by using the prototype of a reconfigurable antenna submitted for journal publication (2018). https://arxiv.org/abs/1901.01752 .

CupCarbon U-One 3.8, A Smart City & IoT wireless sensor network simulator. http://cupcarbon.com/ .

Y. Vahabzadeh, N. Chamanara, C. Caloz, Generalized sheet transition condition FDTD simulation of metasurface. IEEE Trans. Antennas Propag.66(1), 271–280 (2018).

Y. Vahabzadeh, N. Chamanara, C. Caloz, Efficient GSTC-FDTD simulation of dispersive bianisotropic metasurface IEEE Transactions on Antennas and Propagation, submitted (2018). https://arxiv.org/pdf/1710.00044.pdf .

F. Fuschini, E. M. Vitucci, M. Barbiroli, G. Falciasecca, V. Degli-Esposti, Ray tracing propagation modeling for future small-cell and indoor applications: a review of current techniques. Radio Sci.50(6), 469–485 (2015).

C. Liaskos, A. Tsioliaridou, S. Nie, A. Pitsillides, S. Ioannidis, I. Akyildiz, Modeling, simulating and configuring programmable wireless environments for multi-user multi-objective networking, submitted for journal publication (2018). https://arxiv.org/abs/1812.11429 .

A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, X. Qian, Model-aided wireless artificial intelligence: embedding expert knowledge in deep neural networks towards wireless systems optimization, submitted for journal publication (2018). https://arxiv.org/abs/1808.01672 .

A. Zappone, M. Di Renzo, M. Debbah, Wireless networks design in the era of deep learning: model-based, AI-based, or both?IEEE Trans. Commun. submitted, 43 (2018). (invited paper) https://arxiv.org/abs/1902.02647 .

ITU-T Y., 3172 architectural framework for machine learning in future networks including IMT-2020, ITU-T SG13 plenary. Victoria Falls (2019). https://www.itu.int/md/T17-SG13-190304-TD-PLEN/en .

S. J. Pan, Q. Yang, A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng.22(10), 1345–1359 (2010).

J. Park, S. Samarakoon, M. Bennis, M. Debbah, Wireless network intelligence at the edge, submitted (2019). https://arxiv.org/abs/1812.02858 .