Small sub-Riemannian balls onR 3
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Agrachev, Methods of control theory in nonholonomic geometry.Proc. ICM-94, Birkhäuser, Zürich, 1995.
A. Agrachev, El-H. Chakir EL-Alaoui, J. P. Gauthier, and I. Kupka, Generic singularities of sub-Riemannian metrics onR 3.Comptes-Rendus à l'Académie Sci., Paris, 1996, 377–384.
V. Arnold, A. Varchenko, and S. Goussein-Zade, Singularités des applications différentiables (French translation)Mir, Moscow, 1986.
R. W. Brockett, Control theory and singular Riemannian geometry. In: New Directions in Appl. Math., P. J. Hilton and G. S. Young, Eds,Springer Verlag, 1981.
E. Falbel and C. Gorodski, Sub-Riemannian homogeneous spaces in dimension 3 and 4.Preprint, Instituto de Mathematica e Estatistica, Universidade de Sao Paolo, 1994.
Z. Ge, On the cut points and conjugate points in a constrained variational problem.Fields Inst. Commun. 1 (1993), 113–132.
M. Gromov, Carnot-Caratheodory spaces seen from within.Preprint IHES, Feb. 1994.
S. Helgason, Differential geometry and symmetric spaces.Academic Press, New York, 1962.
I. Kupka, Abnormal extremals.Preprint, 1992.
W. Liu and H. J. Sussmann, Abnormal Sub-Riemannian minimizers. In: Differ Equations, Dynamical Systems and Control Science, K. D. Elworthy, W. N. Everitt, and E. B. Lee, Eds,Lect. Notes Pure Appl. Math. Vol. 152,M. Dekker, New York, 1993, 705–716.
W. Liu, Shortest paths for sub-Riemannian metrics on rank-2 distributions (to appear).
J. Mather, Stability ofC ∞ mappings. I–VI.Ann. Math. 87 (1968), 89–104;89 (1969), 254–291;Publ. Sci. IHES 35 (1969), 127–156;37 (1970), 223–248;Adv. Math. 4 (1970), 301–335;Lect. Notes Math. 192 (1971), 207–253.
L. S. Pontryagin, V. G. Boltianskii, R. V. Gamkrelidze, and E. F. Mischednko, La théorie mathématique des processus optimaux. (French translation)Mir, Moscow, 1974.
M. Rumin, Formes différentielles sur les variétés de contact.PHD Thesis, Univ. of Paris Sud., 1992.
A. M. Vershik and V. Y. Gershkovich, Nonholonomic geometry and nilpotent analysis.J. Geom. and Phys. 53 (1989), 407–452.
A. M. Vershik, The geometry of the nonholonomic sphere for three-dimensional Lie groups. In:Encyclopedia Math. Sci. 16, Dynamical Systems 7,Springer-Verlag, 1994.