Small-signal modeling and optimal operating condition of magnetostrictive energy harvester

Journal of Magnetism and Magnetic Materials - Tập 547 - Trang 168819 - 2022
Yoshito Mizukawa1, Umair Ahmed1, Mauro Zucca2, David Blažević1, Paavo Rasilo1
1Tampere University, Electrical Engineering, Korkeakoulunkatu 3, Tampere, Finland
2Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce 91, Torino, Italy

Tài liệu tham khảo

Roundy, 2003 Ueno, 2019, Magnetostrictive vibrational power generator for battery-free IoT application, AIP Adv., 9, 10.1063/1.5079882 Inoue, 2008, Vibration suppression using electromagnetic resonant shunt damper, J. Vib. Acoust., 130, 10.1115/1.2889916 Zuo, 2013, Dual-functional energy-harvesting and vibration control: Electromagnetic resonant shunt series tuned mass dampers, J. Vib. Acoust., 135, 10.1115/1.4024095 Ottman, 2002, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, IEEE Trans. Power Electron., 17, 669, 10.1109/TPEL.2002.802194 Soltani, 2014, Piezoelectric vibration damping using resonant shunt circuits: an exact solution, Smart Mater. Struct., 23, 10.1088/0964-1726/23/12/125014 Den Hartog, 1985 Nishihara, 2002, Closed-form solutions to the exact optimizations of dynamic vibration absorbers (Minimizations of the maximum amplitude magnification factors), J. Vib. Acoust., 124, 576, 10.1115/1.1500335 Yamada, 2015, Enhancing efficiency of piezoelectric element attached to beam using extended spacers, J. Sound Vib., 341, 31, 10.1016/j.jsv.2014.12.022 Ueno, 2011, Performance of energy harvester using Iron–Gallium Alloy in free vibration, IEEE Trans. Magn., 47, 2407, 10.1109/TMAG.2011.2158303 Clark, 2000, Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys, IEEE Trans. Magn., 36, 3238, 10.1109/20.908752 Kellogg, 2002, Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe0.81Ga0.19, J. Appl. Phys., 91, 7821, 10.1063/1.1452216 Atulasimha, 2011, A review of magnetostrictive Iron–Gallium alloys, Smart Mater. Struct., 20, 10.1088/0964-1726/20/4/043001 Palumbo, 2019, Experimental investigation on a Fe-Ga close yoke vibrational harvester by matching magnetic and mechanical biases, J. Magn. Magn. Mater., 469, 354, 10.1016/j.jmmm.2018.08.085 Davino, 2012, Stress-induced Eddy currents in magnetostrictive energy harvesting devices, IEEE Trans. Magn., 48, 18, 10.1109/TMAG.2011.2162744 Ahmed, 2019, Finite element analysis of magnetostrictive energy harvesting concept device utilizing thermodynamic magneto-mechanical model, J. Magn. Magn. Mater., 486, 10.1016/j.jmmm.2019.165275 Ahmed, 2020, Modeling a fe-ga energy harvester fitted with magnetic closure using 3D magneto-mechanical finite element model, J. Magn. Magn. Mater., 500, 10.1016/j.jmmm.2020.166390 Davino, 2011, A two-port nonlinear model for magnetoelastic energy-harvesting devices, IEEE Trans. Ind. Electron., 58, 2556, 10.1109/TIE.2010.2062477 Wang, 2008, Vibration energy harvesting by magnetostrictive material, Smart Mater. Struct., 17, 10.1088/0964-1726/17/4/045009 Engdahl, 2000 Clemente, 2017, Multiphysics circuit of a magnetostrictive energy harvesting device, J. Intell. Mater. Syst. Struct., 28, 2317, 10.1177/1045389X16685444 Zhao, 2006, Application of the Villari effect to electric power harvesting, J. Appl. Phys., 99, 08M703, 10.1063/1.2165133 Scheidler, 2016, Mechanically induced magnetic diffusion in cylindrical magnetoelastic materials, J. Magn. Magn. Mater., 397, 233, 10.1016/j.jmmm.2015.08.074 Asami, 2018, Optimal design of double-mass dynamic vibration absorbers minimizing the mobility transfer function, J. Vib. Acoust., 140, 10.1115/1.4040229 Scheidler, 2016, Frequency-dependent, dynamic sensing properties of polycrystalline galfenol (Fe81.6Ga18.4), J. Appl. Phys., 119, 10.1063/1.4954320 Goll, 2019, Additive manufacturing of soft magnetic materials and components, Addit. Manuf., 27, 428, 10.1016/j.addma.2019.02.021