Small-signal modeling and optimal operating condition of magnetostrictive energy harvester
Tài liệu tham khảo
Roundy, 2003
Ueno, 2019, Magnetostrictive vibrational power generator for battery-free IoT application, AIP Adv., 9, 10.1063/1.5079882
Inoue, 2008, Vibration suppression using electromagnetic resonant shunt damper, J. Vib. Acoust., 130, 10.1115/1.2889916
Zuo, 2013, Dual-functional energy-harvesting and vibration control: Electromagnetic resonant shunt series tuned mass dampers, J. Vib. Acoust., 135, 10.1115/1.4024095
Ottman, 2002, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, IEEE Trans. Power Electron., 17, 669, 10.1109/TPEL.2002.802194
Soltani, 2014, Piezoelectric vibration damping using resonant shunt circuits: an exact solution, Smart Mater. Struct., 23, 10.1088/0964-1726/23/12/125014
Den Hartog, 1985
Nishihara, 2002, Closed-form solutions to the exact optimizations of dynamic vibration absorbers (Minimizations of the maximum amplitude magnification factors), J. Vib. Acoust., 124, 576, 10.1115/1.1500335
Yamada, 2015, Enhancing efficiency of piezoelectric element attached to beam using extended spacers, J. Sound Vib., 341, 31, 10.1016/j.jsv.2014.12.022
Ueno, 2011, Performance of energy harvester using Iron–Gallium Alloy in free vibration, IEEE Trans. Magn., 47, 2407, 10.1109/TMAG.2011.2158303
Clark, 2000, Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys, IEEE Trans. Magn., 36, 3238, 10.1109/20.908752
Kellogg, 2002, Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe0.81Ga0.19, J. Appl. Phys., 91, 7821, 10.1063/1.1452216
Atulasimha, 2011, A review of magnetostrictive Iron–Gallium alloys, Smart Mater. Struct., 20, 10.1088/0964-1726/20/4/043001
Palumbo, 2019, Experimental investigation on a Fe-Ga close yoke vibrational harvester by matching magnetic and mechanical biases, J. Magn. Magn. Mater., 469, 354, 10.1016/j.jmmm.2018.08.085
Davino, 2012, Stress-induced Eddy currents in magnetostrictive energy harvesting devices, IEEE Trans. Magn., 48, 18, 10.1109/TMAG.2011.2162744
Ahmed, 2019, Finite element analysis of magnetostrictive energy harvesting concept device utilizing thermodynamic magneto-mechanical model, J. Magn. Magn. Mater., 486, 10.1016/j.jmmm.2019.165275
Ahmed, 2020, Modeling a fe-ga energy harvester fitted with magnetic closure using 3D magneto-mechanical finite element model, J. Magn. Magn. Mater., 500, 10.1016/j.jmmm.2020.166390
Davino, 2011, A two-port nonlinear model for magnetoelastic energy-harvesting devices, IEEE Trans. Ind. Electron., 58, 2556, 10.1109/TIE.2010.2062477
Wang, 2008, Vibration energy harvesting by magnetostrictive material, Smart Mater. Struct., 17, 10.1088/0964-1726/17/4/045009
Engdahl, 2000
Clemente, 2017, Multiphysics circuit of a magnetostrictive energy harvesting device, J. Intell. Mater. Syst. Struct., 28, 2317, 10.1177/1045389X16685444
Zhao, 2006, Application of the Villari effect to electric power harvesting, J. Appl. Phys., 99, 08M703, 10.1063/1.2165133
Scheidler, 2016, Mechanically induced magnetic diffusion in cylindrical magnetoelastic materials, J. Magn. Magn. Mater., 397, 233, 10.1016/j.jmmm.2015.08.074
Asami, 2018, Optimal design of double-mass dynamic vibration absorbers minimizing the mobility transfer function, J. Vib. Acoust., 140, 10.1115/1.4040229
Scheidler, 2016, Frequency-dependent, dynamic sensing properties of polycrystalline galfenol (Fe81.6Ga18.4), J. Appl. Phys., 119, 10.1063/1.4954320
Goll, 2019, Additive manufacturing of soft magnetic materials and components, Addit. Manuf., 27, 428, 10.1016/j.addma.2019.02.021