Small secreted peptides (SSPs) in tomato and their potential roles in drought stress response
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aggarwal S, Kumar A, Jain M, et al. C-terminally encoded peptides (CEPs) are potential mediators of abiotic stress response in plants. Physiol Mol Biol Plants. 2020;26:2019–33. https://doi.org/10.1007/s12298-020-00881-4.
Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3. https://doi.org/10.1038/s41587-019-0036-z.
Amano Y, Tsubouchi H, Shinohara H, et al. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA. 2007;104:18333–8. https://doi.org/10.1073/pnas.0706403104.
Atkinson NJ, Lilley CJ, Urwin PE. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 2013;162:2028–41. https://doi.org/10.1104/pp.113.222372.
Bai Y, Kissoudis C, Yan Z, et al. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant J. 2018;93:781–93. https://doi.org/10.1111/tpj.13800.
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.
Bolger A, Scossa F, Bolger ME, et al. The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet. 2014;46:1034–8. https://doi.org/10.1038/ng.3046.
Boschiero C, Dai X, Lundquist PK, et al. MtSSPdb: The Medicago truncatula Small Secreted Peptide Database. Plant Physiol. 2020;183:399–413. https://doi.org/10.1104/pp.19.01088.
Butenko MA, Patterson SE, Grini PE, et al. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell. 2003;15:2296–307. https://doi.org/10.1105/tpc.014365.
Cao WH, Liu J, He XJ, et al. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 2007;143:707–19. https://doi.org/10.1104/pp.106.094292.
Carbonnel S, Falquet L, Hazak O. Deeper genomic insights into tomato CLE genes repertoire identify new active peptides. BMC Genomics. 2022;23:756. https://doi.org/10.1186/s12864-022-08980-0.
Chapman K, Taleski M, Ogilvie HA, et al. CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth. J Exp Bot. 2019;70:3955–67. https://doi.org/10.1093/jxb/erz207.
Chen C, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020a;13:1194–202. https://doi.org/10.1016/j.molp.2020.06.009.
Chen YL, Fan KT, Hung SC, et al. The role of peptides cleaved from protein precursors in eliciting plant stress reactions. New Phytol. 2020b;225:2267–82. https://doi.org/10.1111/nph.16241.
Chong L, Xu R, Huang P, et al. The tomato OST1-VOZ1 module regulates drought-mediated flowering. Plant Cell. 2022;34:2001–18. https://doi.org/10.1093/plcell/koac026.
Ciccarelli FD, Doerks T, von Mering C, et al. Toward automatic reconstruction of a highly resolved tree of life. Science. 2006;311:1283–7. https://doi.org/10.1126/science.1123061.
Feng W, Kita D, Peaucelle A, et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol. 2018;28:666–75. https://doi.org/10.1016/j.cub.2018.01.023.
Fernandez-Pozo N, Menda N, Edwards JD, et al. The Sol Genomics Network (SGN)–from genotype to phenotype to breeding. Nucleic Acids Res. 2015;43:D1036–41. https://doi.org/10.1093/nar/gku1195.
Fletcher JC, Brand U, Running MP, et al. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science. 1999;283:1911–4. https://doi.org/10.1126/science.283.5409.1911.
Goodstein DM, Shu S, Howson R, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86. https://doi.org/10.1093/nar/gkr944.
Hanada K, Zhang X, Borevitz JO, et al. A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res. 2007;17:632–40. https://doi.org/10.1101/gr.5836207.
Hanada K, Akiyama K, Sakurai T, et al. sORF finder: a program package to identify small open reading frames with high coding potential. Bioinformatics. 2010;26:399–400. https://doi.org/10.1093/bioinformatics/btp688.
Hara K, Kajita R, Torii KU, et al. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev. 2007;21:1720–5. https://doi.org/10.1101/gad.1550707.
Hodges DM, DeLong JM, Forney CF, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–11. https://doi.org/10.1007/s004250050524.
Jia C, Guo B, Wang B, et al. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. Bmc Plant Biol. 2022;22:596. https://doi.org/10.1186/s12870-022-03953-7.
Kim JS, Mizoi J, Yoshida T, et al. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol. 2011;52:2136–46. https://doi.org/10.1093/pcp/pcr143.
Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80. https://doi.org/10.1006/jmbi.2000.4315.
Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7 0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. https://doi.org/10.1093/molbev/msw054.
Landi S, De Lillo A, Nurcato R, et al. In-field study on traditional Italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. Plant Physiol Bioch. 2017;118:150–60. https://doi.org/10.1016/j.plaphy.2017.06.011.
Lease KA, Walker JC. The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol. 2006;142:831–8. https://doi.org/10.1104/pp.106.086041.
Lee JS, Hnilova M, Maes M, et al. Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature. 2015;522:439–43. https://doi.org/10.1038/nature14561.
Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30:325–7. https://doi.org/10.1093/nar/30.1.325.
Li YL, Dai XR, Yue X, et al. Identification of small secreted peptides (SSPs) in maize and expression analysis of partial SSP genes in reproductive tissues. Planta. 2014;240:713–28. https://doi.org/10.1007/s00425-014-2123-1.
Lin T, Zhu G, Zhang J, et al. Genomic analyses provide insights into the history of tomato breeding. Nat Genet. 2014;46:1220–6. https://doi.org/10.1038/ng.3117.
Liu W, Xie Y, Ma J, et al. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics. 2015;31:3359–61. https://doi.org/10.1093/bioinformatics/btv362.
Liu Z, Hou S, Rodrigues O, et al. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature. 2022;605:332–9. https://doi.org/10.1038/s41586-022-04684-3.
Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–8. https://doi.org/10.1093/nar/gkz991.
Ludidi NN, Heazlewood JL, Seoighe C, et al. Expansin-like molecules: novel functions derived from common domains. J Mol Evol. 2002;54:587–94. https://doi.org/10.1007/s00239-001-0055-4.
Marshall E, Costa LM, Gutierrez-Marcos J. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. J Exp Bot. 2011;62:1677–86. https://doi.org/10.1093/jxb/err002.
Matsubayashi Y. Small post-translationally modified Peptide signals in Arabidopsis. Arabidopsis Book. 2011;9:e150. https://doi.org/10.1199/tab.0150.
Matsubayashi Y, Sakagami Y. Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA. 1996;93:7623–7. https://doi.org/10.1073/pnas.93.15.7623.
Matsubayashi Y, Ogawa M, Kihara H, et al. Disruption and overexpression of Arabidopsis phytosulfokine receptor gene affects cellular longevity and potential for growth. Plant Physiol. 2006;142:45–53. https://doi.org/10.1104/pp.106.081109.
Nakaminami K, Okamoto M, Higuchi-Takeuchi M, et al. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci USA. 2018;115:5810–5. https://doi.org/10.1073/pnas.1719491115.
Napier RM, Fowke LC, Hawes C, et al. Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci. 1992;102(Pt 2):261–71. https://doi.org/10.1242/jcs.102.2.261.
Ohkubo Y, Tanaka M, Tabata R, et al. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants. 2017;3:17029. https://doi.org/10.1038/nplants.2017.29.
Pallakies H, Simon R. The CLE40 and CRN/CLV2 signaling pathways antagonistically control root meristem growth in Arabidopsis. Mol Plant. 2014;7:1619–36. https://doi.org/10.1093/mp/ssu094.
Pan B, Sheng J, Sun W, et al. OrysPSSP: a comparative platform for small secreted proteins from rice and other plants. Nucleic Acids Res. 2013;41:D1192–8. https://doi.org/10.1093/nar/gks1090.
Pearce G, Strydom D, Johnson S, et al. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science. 1991;253:895–7. https://doi.org/10.1126/science.253.5022.895.
Pearce G, Moura DS, Stratmann J, et al. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci USA. 2001;22:12843–7.
Qiao K, Yao X, Zhou Z, et al. Mitochondrial alternative oxidase enhanced ABA-mediated drought tolerance in Solanum lycopersicum. J Plant Physiol. 2022;280:153892. https://doi.org/10.1016/j.jplph.2022.153892.
Reichardt S, Piepho HP, Stintzi A, et al. Peptide signaling for drought-induced tomato flower drop. Science. 2020;367:1482–5. https://doi.org/10.1126/science.aaz5641.
Roberts I, Smith S, De Rybel B, et al. The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development. J Exp Bot. 2013;64:5371–81. https://doi.org/10.1093/jxb/ert331.
Sakuma Y, Maruyama K, Qin F, et al. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA. 2006;103:18822–7. https://doi.org/10.1073/pnas.0605639103.
Sawa S, Kinoshita A, Nakanomyo I, et al. CLV3/ESR-related (CLE) peptides as intercellular signaling molecules in plants. Chem Rec. 2006;6:303–10. https://doi.org/10.1002/tcr.20091.
Smith S, Zhu S, Joos L, et al. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Mol Cell Proteomics. 2020;19:1248–62. https://doi.org/10.1074/mcp.RA119.001826.
Sugano SS, Shimada T, Imai Y, et al. Stomagen positively regulates stomatal density in Arabidopsis. Nature. 2010;463:241–4. https://doi.org/10.1038/nature08682.
Sun L, Wang YP, Chen P, et al. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot. 2011;62:5659–69. https://doi.org/10.1093/jxb/err252.
Tabata R, Sumida K, Yoshii T, et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science. 2014;346:343–6. https://doi.org/10.1126/science.1257800.
Takahashi F, Suzuki T, Osakabe Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature. 2018;556:235–8. https://doi.org/10.1038/s41586-018-0009-2.
Taleski M, Imin N, Djordjevic MA. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. J Exp Bot. 2018;69:1829–36. https://doi.org/10.1093/jxb/ery037.
Taleski M, Chapman K, Novak O, et al. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth. Nat Commun. 2023;14:1683. https://doi.org/10.1038/s41467-023-37282-6.
Terzi R, Kadioğlu A. Drought stress tolerance and the antioxidant enzyme system in Ctenanthe setosa. Acta Biol Cracov Bot. 2006;48:89–96.
Tian T, Liu Y, Yan H, et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45:W122–9. https://doi.org/10.1093/nar/gkx382.
Tian D, Xie Q, Deng Z, et al. Small secreted peptides encoded on the wheat (triticum aestivum L.) genome and their potential roles in stress responses. Front Plant Sci. 2022;13:1000297. https://doi.org/10.3389/fpls.2022.1000297.
Vie AK, Najafi J, Liu B, et al. The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis: phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. J Exp Bot. 2015;66:5351–65. https://doi.org/10.1093/jxb/erv285.
Wang K, He J, Zhao Y, et al. EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity. Plant Cell. 2018;30:815–34. https://doi.org/10.1105/tpc.17.00875.
Wang P, Yao S, Kosami KI, et al. Identification of endogenous small peptides involved in rice immunity through transcriptomics- and proteomics-based screening. Plant Biotechnol J. 2020;18:415–28. https://doi.org/10.1111/pbi.13208.
Whitford R, Fernandez A, De Groodt R, et al. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci USA. 2008;105:18625–30. https://doi.org/10.1073/pnas.0809395105.
Yu Y, Assmann SM. Inter-relationships between the heterotrimeric Gbeta subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response. Plant Cell Environ. 2018;41:2475–89. https://doi.org/10.1111/pce.13370.
Zhang L, Gleason C. Enhancing potato resistance against root-knot nematodes using a plant-defence elicitor delivered by bacteria. Nat Plants. 2020;6:625–9. https://doi.org/10.1038/s41477-020-0689-0.
Zhang L, Shi X, Zhang Y, et al. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ. 2019;42:1033–44. https://doi.org/10.1111/pce.13475.
Zhang L, Ren Y, Xu Q, et al. SiCEP3, a C-terminally encoded peptide from Setaria italica, promotes ABA import and signaling. J Exp Bot. 2021;72:6260–73. https://doi.org/10.1093/jxb/erab267.
Zhang Z, Liu C, Li K, et al. CLE14 functions as a “brake signal” to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. Mol Plant. 2022;15:179–88. https://doi.org/10.1016/j.molp.2021.09.006.
Zhao C, Jiang W, Zayed O, et al. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl Sci Rev. 2021;8:a149. https://doi.org/10.1093/nsr/nwaa149.