Small molecules that delay S phase suppress a zebrafish bmyb mutant

Nature Chemical Biology - Tập 1 Số 7 - Trang 366-370 - 2005
Howard M. Stern1, Ryan D. Murphey2, Jennifer L Shepard2, James F. Amatruda2, Christian Straub2, Kathleen L. Pfaff2, Gerhard Weber2, John A. Tallarico3, Randall W. King3, Leonard I. Zon2
1Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, 02115, Massachusetts, USA
2Stem Cell Program and Division of Hematology and Oncology, Children's Hospital, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, 1 Blackfan Circle, Boston, 02115, Massachusetts, USA
3Institute of Chemistry and Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, 02115, Massachusetts, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sala, A. & Watson, R. B-Myb protein in cellular proliferation, transcription control, and cancer: latest developments. J. Cell. Physiol. 179, 245–250 (1999).

Oh, I.H. & Reddy, E.P. The myb gene family in cell growth, differentiation and apoptosis. Oncogene 18, 3017–3033 (1999).

Joaquin, M. & Watson, R.J. Cell cycle regulation by the B-Myb transcription factor. Cell. Mol. Life Sci. 60, 2389–2401 (2003).

Bessa, M., Joaquin, M., Tavner, F., Saville, M.K. & Watson, R.J. Regulation of the cell cycle by B-Myb. Blood Cells Mol. Dis. 27, 416–421 (2001).

Shepard, J.L. et al. A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc. Natl. Acad. Sci. USA 102, 13194–13199 (2005).

Peterson, R.T., Link, B.A., Dowling, J.E. & Schreiber, S.L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97, 12965–12969 (2000).

Khersonsky, S.M. et al. Facilitated forward chemical genetics using a tagged triazine library and zebrafish embryo screening. J. Am. Chem. Soc. 125, 11804–11805 (2003).

Hendzel, M.J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216–220 (2000).

Feijoo, C. et al. Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J. Cell Biol. 154, 913–923 (2001).

Sorensen, C.S. et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3, 247–258 (2003).

Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

Donaldson, A.D. & Blow, J.J. DNA replication: stable driving prevents fatal smashes. Curr. Biol. 11, R979–R982 (2001).

Tercero, J.A., Longhese, M.P. & Diffley, J.F. A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11, 1323–1336 (2003).

Shiloh, Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev. 11, 71–77 (2001).

Costanzo, V. et al. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol. Cell 11, 203–213 (2003).

Cortez, D. Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J. Biol. Chem. 278, 37139–37145 (2003).

Okada, M., Akimaru, H., Hou, D.X., Takahashi, T. & Ishii, S. Myb controls G(2)/M progression by inducing cyclin B expression in the Drosophila eye imaginal disc. EMBO J. 21, 675–684 (2002).

Zhu, W., Giangrande, P.H. & Nevins, J.R. E2Fs link the control of G1/S and G2/M transcription. EMBO J. 23, 4615–4626 (2004).

Stern, H.M. & Zon, L.I. Cancer genetics and drug discovery in the zebrafish. Nat. Rev. Cancer 3, 533–539 (2003).

MacRae, C.A. & Peterson, R.T. Zebrafish-based small molecule discovery. Chem. Biol. 10, 901–908 (2003).

Pichler, F.B. et al. Chemical discovery and global gene expression analysis in zebrafish. Nat. Biotechnol. 21, 879–883 (2003).

Peterson, R.T., Mably, J.D., Chen, J.N. & Fishman, M.C. Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Curr. Biol. 11, 1481–1491 (2001).

Peterson, R.T. et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol. 22, 595–599 (2004).

Berghmans, S. et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl. Acad. Sci. USA 102, 407–412 (2005).

Amsterdam, A. et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol. 2, E139 (2004).

Langenau, D.M. et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003).

Patton, E.E. et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 15, 249–254 (2005).