Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid

Journal of Experimental Medicine - Tập 204 Số 8 - Trang 1775-1785 - 2007
Cheng‐Ming Sun1, Jason A. Hall1,2, Rebecca B Blank1, Nicolas Bouladoux1, Mohamed Oukka3, J. Rodrigo Mora4, Yasmine Belkaid1
11Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
22Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
33Center for Neurological Diseases, Brigham Women's Hospital, Harvard's Medical School, Cambridge, MA 02139
4Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114;

Tóm tắt

To maintain immune homeostasis, the intestinal immune system has evolved redundant regulatory strategies. In this regard, the gut is home to a large number of regulatory T (T reg) cells, including the Foxp3+ T reg cell. Therefore, we hypothesized that the gut environment preferentially supports extrathymic T reg cell development. We show that peripheral conversion of CD4+ T cells to T reg cells occurs primarily in gut-associated lymphoid tissue (GALT) after oral exposure to antigen and in a lymphopenic environment. Dendritic cells (DCs) purified from the lamina propria (Lp; LpDCs) of the small intestine were found to promote a high level of T reg cell conversion relative to lymphoid organ–derived DCs. This enhanced conversion by LpDCs was dependent on TGF-β and retinoic acid (RA), which is a vitamin A metabolite highly expressed in GALT. Together, these data demonstrate that the intestinal immune system has evolved a self-contained strategy to promote T reg cell neoconversion.

Từ khóa


Tài liệu tham khảo

2005, J. Exp. Med., 202, 901, 10.1084/jem.20050784

2001, J. Exp. Med., 194, 427, 10.1084/jem.194.4.427

2001, Nat. Immunol., 2, 301, 10.1038/86302

2003, J. Exp. Med., 198, 1875, 10.1084/jem.20030152

2006, Nature., 441, 235, 10.1038/nature04753

2004, J. Immunol., 172, 5149, 10.4049/jimmunol.172.9.5149

2005, Nat. Immunol., 6, 1219, 10.1038/ni1265

2005, J. Exp. Med., 202, 1375, 10.1084/jem.20050855

2005, Proc. Natl. Acad. Sci. USA., 102, 5126, 10.1073/pnas.0501701102

2005, Immunity., 22, 329, 10.1016/j.immuni.2005.01.016

2003, Novartis Found. Symp., 252, 92, 10.1002/0470871628.ch7

2001, J. Immunol., 166, 4884, 10.4049/jimmunol.166.8.4884

2003, Nat. Rev. Immunol., 3, 331, 10.1038/nri1057

2005, Eur. J. Immunol., 35, 1831, 10.1002/eji.200425882

2003, J. Exp. Med., 198, 963, 10.1084/jem.20031244

2005, J. Exp. Med., 202, 1063, 10.1084/jem.20051100

2007, Eur. J. Immunol., 37, 978, 10.1002/eji.200636575

2006, Science., 314, 1157, 10.1126/science.1132742

1993, Gastroenterology., 105, 67, 10.1016/0016-5085(93)90011-Z

2000, Curr. Opin. Cell Biol., 12, 563, 10.1016/S0955-0674(00)00132-0

2005, J. Clin. Invest., 115, 1923, 10.1172/JCI24487

1990, Immunology., 70, 40

2005, Curr. Opin. Gastroenterol., 21, 687, 10.1097/01.mog.0000181710.96904.58

2005, J. Exp. Med., 202, 1051, 10.1084/jem.20040662

2003, Nature., 424, 88, 10.1038/nature01726

2004, Immunity., 21, 527, 10.1016/j.immuni.2004.08.011

1994, Science., 265, 1237, 10.1126/science.7520605

2006, J. Exp. Med., 203, 519, 10.1084/jem.20052016

2005, Nat. Immunol., 6, 507, 10.1038/ni1192

2005, Nature., 436, 1181, 10.1038/nature03886

1994, Immunity., 1, 393, 10.1016/1074-7613(94)90070-1

2003, Annu. Rev. Nutr., 23, 229, 10.1146/annurev.nutr.23.011702.073036

1999, Nature., 398, 760

2007, Immunity., 26, 149, 10.1016/j.immuni.2007.02.004

2004, J. Exp. Med., 200, 201, 10.1084/jem.20040298

1998, J. Exp. Med., 188, 287, 10.1084/jem.188.2.287