Small-gain theorem for ISS systems and applications

Mathematics of Control, Signals and Systems - Tập 7 Số 2 - Trang 95-120 - 1994
Zhong‐Ping Jiang1, Andrew R. Teel2, Laurent Praly1
1Centre Automatique et Systèmes, École des Mines de Paris, Fontainebleau Cedex, France
2Dept. of Electrical Engineering, University of Minnesota, Minneapolis, USA#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

B. R. Barmish, M. Corless, and G. Leitmann, A new class of stabilizing controllers for uncertain dynamical systems,SIAM J. Control Optim.,21 (1983), 246?255.

C. Byrnes and A. Isidori, Asymptotic stabilization of minimum phase nonlinear systems,IEEE Trans. Automat. Control,36 (1991), 1122?1137.

Y. H. Chen and G. Leitmann, Robustness of uncertain systems in the absence of matching assumptions,Internat. J. Control,45 (1987), 1527?1542.

C. Desoer and M. Vidyasagar,Feedback Systems: Input-Output Properties, Academic Press, New York, 1975.

W. Evans,Control Systems Dynamics, McGraw-Hill, New York, 1953.

R. A. Freeman and P. V. Kokotovic, Backstepping design of robust controllers for a class of nonlinear systems,Proc. IFAC NOLCOS '92 Symp., pp. 307?312, Bordeaux, June 1992.

J. K. Hale,Ordinary Differential Equations, Krieger, 1980.

A. Isidori,Nonlinear Control Systems, 2nd edn., Springer-Verlag, Berlin, 1989.

Z. P. Jiang, Quelques résultats de stabilisation robuste. Applications à la commande, Docteur en Mathématiques et Automatique, Ecole des Mines de Paris, 1993.

Z. P. Jiang and L. Praly, Technical results for the study of robustness of Lagrange stability,Systems Control Lett.,23 (1994), 67?78.

I. Kanellakopoulos, P. V. Kokotovi?, and A. S. Morse, Systematic design of adaptive controllers for feedback linearizable systems,IEEE Trans. Automat. Control,36 (1991), 1241?1253.

I. Kanellakopoulos, P. V. Kokotovi?, and A. S. Morse, A toolkit for nonlinear feedback design,Systems Control Lett.,18 (1992), 83?92.

H. K. Khalil,Nonlinear Systems, Macmillan, New York, 1992.

A. Liapounoff,Problème général de la stabilité du mouvement, Annales de la Faculté des Sciences de Toulouse, deuxième série, Tome IX, 1907, Traduit du Russe par M. Édouard Davaux.

Y. Lin, Lyapunov function techniques for stabilization, Ph.D. thesis, Rutgers University, 1992.

Z. Lin and A. Saberi, Robust semi-global stabilization of minimum phase input-output linearizable systems via partial state feedback,IEEE Trans. Automat. Control, submitted.

Y. Lin, E. D. Sontag, and Y. Wang, Recent results on Lyapunov theoretic techniques for nonlinear stability. Report SYCON-93-09.

I. M. Y. Mareels and D. J. Hill, Monotone stability of nonlinear feedback systems,J. Math. Systems Estim. Control,2 (1992), 275?291.

R. Marino and P. Tomei, Dynamic output feedback linearization and global stabilization,Systems Control Lett.,17 (1991), 115?121.

R. Marino and P. Tomei, Self-tuning stabilization of feedback linearizable systems,Proc. IF AC AC ASP '92, pp. 9?14, Grenoble, 1992.

L. Praly and Z. P. Jiang, Stabilization by output feedback for systems with ISS inverse dynamics,Systems Control Lett.,21 (1993), 19?33.

L. Rosier, Homogeneous Lyapunov functions for homogeneous continuous vector fields,Systems Control Lett.,19 (1992), 467?473.

A. Saberi, P. V. Kokotovi?, and H. Sussmann, Global stabilization of partially linear composite systems,SIAM J. Control Optim.,28 (1990), 1491?1503.

M. G. Safonov,Stability and Robustness of Multivariable Feedback Systems, MIT Press, Cambridge, MA, 1980.

E. D. Sontag, Smooth stabilization implies coprime factorization,IEEE Trans. Automat. Control,34 (1989), 435?443.

E. D. Sontag, Remarks on stabilization and input-to-state stability,Proc. 28th IEEE Conf. on Decision and Control, pp. 1376?1378, 1989.

E. D. Sontag, Further facts about input-to-state stabilization,IEEE Trans. Automat. Control,35 (1990), 473?476.

H. Sussmann, Limitations on the stabilizability of globally minimum phase systems,IEEE Trans. Automat. Control,35 (1990), 117?119.

H. Sussmann and P. Kokotovi?, The peaking phenomenon and the global stabilization of nonlinear systems,IEEE Trans. Automat. Control,36 (1991), 424?440.

A. Teel, Semi-global stabilization of minimum phase nonlinear systems in special normal forms,Systems Control Lett.,19 (1992), 187?192.

A. Teel and L. Praly, Tools for semi-global stabilization by partial state and output feedback,SIAM J. Control Optim., to appear.

J. Tsinias, Sufficient Lyapunov-like conditions for stabilization,Math. Control Signals Systems,2 (1989), 343?357.

J. Tsinias, Sontag's ?input to state stability condition? and the global stabilization using state detection,Systems Control Lett.,20 (1993), 219?226.

J. Tsinias, Versions of Sontag's ?input to state stability condition? and the global stabilization problem,SIAM J. Control Optim.,31 (1993), 928?941.

M. Vidyasagar and A. Vannelli, New relationships between input-output and Lyapunov stability,IEEE Trans. Automat. Control,27 (1982), 481?483.