Small-Time Extinction with Decay Estimate of Bilinear Systems on Hilbert Space

Journal of Nonlinear Science - Tập 33 - Trang 1-27 - 2023
Chaker Jammazi1,2, Mohamed Ouzahra3, Mohamed Sogoré4,5
1Ecole Nationale d’Ingénieurs de Tunis- Université Tunis El-Manar, Tunis, Tunisia
2Laboratoire d’Ingénierie Mathématique (LIM), Ecole Polytechnique de Tunisie, Université de Carthage, Carthage, Tunisia
3Laboratoire de Mathématiques, Modélisation et Physique Appliquée (MMPA), Fez, Morocco
4Faculté des Sciences de Bizerte, Laboratoire d’Ingénierie Mathématique (LIM), Ecole Polytechnique de Tunisie, Université de Carthage, Carthage, Tunisia
5Ecole Normale d’Enseignement Technique et Professionnel de Bamako (ENETP), Bamako, Mali

Tóm tắt

This paper considers the stabilization problem of bilinear systems in small time by various feedback laws. Then, under some reasonable assumptions on the system and control operator, we prove the global polynomial stabilization of the bilinear system, at hand, in a small time by unbounded feedback. A decay rate of the stabilized state is explicitly estimated. Moreover, we use an observability condition to prove a partial stabilization in a prescribed time by time-varying feedback. Examples of heat, transport and wave equations are revisited.

Tài liệu tham khảo

Antontsev, S.N., Díaz, J.I., Shmarev, S.: Energy methods for free boundary problems: applications to nonlinear PDEs and fluid mechanics, volume 48 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Basel (2002) Ball, J.M.: On the asymptotic behavior of generalized grocesses with applications to nonlinear evolution equations. J. Diff. Equ. 27, 224–265 (1978) Ball, J.M., Marsden, J.E., Slemrod, M.: Controllability for distributed bilinear systems. SIAM J. Control. Optim. 20(4), 575–597 (1982) Ball, J.M., Slemrod, M.: Feedback stabilization of distributed semilinear control systems. Appl. Math. Optim. 5, 169–179 (1979) Banks, S.P.: Stabilizability of finite and infinite dimensional bilinear systems. IMA J. Math. Contr. Info. 3, 255–271 (1986) Ben Belgacem, G., Jammazi, C.: On the finite-time Bhat-Bernstein feedbacks for the strings connected by a point mass. Discrete Contin. Dyn. Syst. Ser. B 24, 1653–1675 (2019) Berrahmoune, L.: Stabilization and decay estimate for distributed bilinear systems. Syst. Control Lett. 36, 167–171 (1999) Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38, 751–766 (2000) Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17, 101–127 (2005) Bradley, M.E., Lenhart, S., Yong, J.: Bilinear optimal control of the velocity term in a Kirchhoff plate equation. J. Math. Anal. Appl. 238, 451–467 (1999) Carles, R., Gallo, C.: Finite time extinction by nonlinear damping for the Schrödinger equation. Comm. Partial Differ. Equ. 36(6), 961–975 (2011) Chen, Min-Shin.: Exponential stabilization of a constrained bilinear system. Automatica 34(8), 989–992 (1998) Coron, J.M.: Control and Nonlinearity, volume 136. Math. surveys and monographs (2007) Coron, J.M., Gagnon, L., Morancey, M.: Rapid stabilization of a linearized bilinear 1-d Schrödinger equation. J. Math. Pures Appl. 115, 24–73 (2018) d’Andréa Novel, B., Coron, J.-M., Perruquetti, W.: Small-time stabilization of nonholonomic or underactuated mechanical systems: the unicycle and the slider examples. SIAM J. Control. Optim. 58(5), 2997–3018 (2020) Díaz, J.I.: Special finite time extinction in nonlinear evolution systems: dynamic boundary conditions and Coulomb friction type problems, volume 64 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Verlag Basel/Switzerland, (2005) Hong, Y., Jiang, Z.P.: Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans. Autom. Control 51(2), 1950–1956 (2006) Jammazi, C.: Continuous and discontinuous homogeneous feedbacks finite-time partially stabilizing controllable multichained systems. SIAM J. Control. Optim. 52(1), 520–544 (2014) Jammazi, C., Abichou, A.: Controllability of linearized systems implies local finite-time stabilizability: applications to finite-time attitude control. IMA Math. Control Info 35(2), 249–277 (2018) Jammazi, C., Ben Belgacem, G.: On the finite-time stabilization of some hyperbolic control systems by boundary feedback laws: Lyapunov approach. In: Identification and Control: Some New Challenges, pp. 137–160. Contemp. Math., 757, Amer. Math. Soc., Providence, RI (2020) Khalil, H.K.: Nonlinear Systms, 3rd edn. Prentice Hall, New Jersey (2002) Liang, Min: Bilinear optimal control for a wave equation. Math. Model Meth. Appl. Sci. 9(1), 45–68 (1999) Mohler, R.R., Frick, P.A.: Bilinear demographic control processes. Int. J. Policy Anal. Inf. Syst. 2, 57–70 (1979) Muller, S.: Strong convergence and arbitrarily slow decay of energy for a class of bilinear control problems. J. Differ. Equ. 81, 50–67 (1989) Ouzahra, M.: Stabilization with decay estimate for a class of distributed bilinear systems. Eur. J. Control 5, 509–515 (2007) Ouzahra, M.: Strong stabilization with decay estimate of semilinear systems. Syst. Control Lett. 57, 813–815 (2008) Ouzahra, M.: Exponential and weak stabilization of constrained bilinear systems. SIAM Contr. Optim. 48(6), 3962–3974 (2010) Ouzahra, M.: Exponential stabilization of distributed semilinear systems by optimal control. J. Math. Anal. Appl. 380, 117–123 (2011) Pazy, A.: Semi-groups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983) Perrollaz, V., Rosier, L.: Finite-time stabilization of systems of conservation laws on networks. SIAM Contr. Optim. 52(1), 143–163 (2014) Polyakov, A.: Generalized Homogeneity in Systems and Control. Communications and Control Engineering, Springer, Berlin (2020) Polyakov, A., Coron, J. M., Rosier, L.: On finite-time stabilization of evolution equations: A homogeneous approach. In: IEEE 55th Conference on Decision and control, Las Vegas, USA (2016) Polyakov, A., Coron, J.M., Rosier, L.: On boundary finite-time feedback control for heat equation. In: 20th IFAC World Congress, Toulouse, France, July (2017) Polyakov, A., Coron, J.M., Rosier, L.: On homogeneous finite time control for linear evolution equation in hilbert space. IEEE Trans. Autom. Control 63(9), 3143–3150 (2018) Quinn, J.P.: Stabilization of bilinear systems by quadratic feedback controls. J. Math. Anal. Appl. 75, 66–80 (1980) Sogoré, M., Jammazi, C.: On the global finite-time stabilization of bilinear systems by homogeneous feedback laws. Applications to some PDE’s. J. Math. Anal. Appl 486, 1–22 (2020) Song, Y., Wang, Y., Krstic, M.: Time-varying feedback for stabilization in prescribed finite time. Int. J. Robust Nonlinear Control 29(3), 1–16 (2019) Williamson, D.: Observation of bilinear systems with application to biological control. Automatica 13, 243–254 (1977) Zerrik, E.H., Boukhari, N.E.: Optimal bounded controls problem for bilinear systems. Evol. Equ. Control Theory 4(2), 221–232 (2015) Zerrik, E.H., Boukhari, N.E.: Constrained optimal control for a class of semilinear infinite dimensional systems. J. Dyn. Control Syst. 24, 65–81 (2017)