Small Reynolds number nearly isotropic turbulence in a straight duct and a contraction

AIP Publishing - Tập 21 Số 12 - Trang 2129-2140 - 1978
J. Bennett1, S. Corrsin1
1The Johns Hopkins University, Baltimore, Maryland, 21218

Tóm tắt

Measurements have been made of nearly isotropic, low Reynolds number, grid-generated turbulence. The decay results agree with the predictions for ’’final period’’ isotropic turbulence decay (in time) by the linear approximation of von Kármán and Howarth, and Batchelor and Townsend. This agreement occurs in spite of the fact that at the smallest turbulence Reynolds number attained, Rλ≈4, the inertial (triple velocity correlation) term in the double velocity correlation equation is not negligible as assumed in the theoretical estimates. As in experiments of Batchelor and Stewart, the turbulence shows appreciable departure from isotropy, indicated by component energy inequality growth downstream. It is also shown by nonzero velocity skewness, not reported heretofore at small Rλ. Measurement of the effect of a secondary contraction on small Reynolds number turbulence indicates that the contraction has less effect than at larger Reynolds numbers.

Từ khóa


Tài liệu tham khảo

1956, Proc. Cambridge Philos. Soc., 52, 135, 10.1017/S0305004100031066

1975, J. Fluid Mech., 68, 813, 10.1017/S0022112075001255

1938, Proc. R. Soc. London Ser. A, 164, 192, 10.1098/rspa.1938.0013

1948, Appl. Math., 6, 97

1967, J. Fluid Mech., 27, 58

1948, Proc. R. Soc. London Ser. A, 194, 527, 10.1098/rspa.1948.0095

1950, Q. J. Mech. Appl. Math., 3, 1, 10.1093/qjmam/3.1.1

1958, Phys. Fluids, 1, 111, 10.1063/1.1705872

1960, Phys. Fluids, 3, 176, 10.1063/1.1706014

1950, Proc. R. Soc. London Ser. A, 203, 358, 10.1098/rspa.1950.0143

1963, Phys. Fluids, 6, 1693, 10.1063/1.1711011

1965, Phys. Fluids, 8, 1911, 10.1063/1.1761131

1965, Phys. Fluids, 8, 2106, 10.1063/1.1761161

1970, Phys. Fluids, 13, 2912, 10.1063/1.1692882

1966, J. Fluid Mech., 25, 657, 10.1017/S0022112066000338

1957, J. Appl. Mech., 24, 2, 10.1115/1.4011434

1967, Phys. Fluids, 10, 1737, 10.1063/1.1762352

1970, J. Fluid Mech., 41, 283, 10.1017/S0022112070000629

1955, Proc. Cambridge Philos. Soc., 51, 220, 10.1017/S0305004100030073

1974, Int. J. Heat Mass Transfer, 17, 705, 10.1016/0017-9310(74)90165-3

1971, J. Fluid Mech., 48, 273, 10.1017/S0022112071001599

1947, Proc. R. Soc. London Ser. A, 190, 534, 10.1098/rspa.1947.0095

1978, J. Fluid Mech., 88, 63, 10.1017/S0022112078001986

1951, Philos. Trans. R. Soc. London Ser. A, 243, 359, 10.1098/rsta.1951.0007

1951, Proc. Cambridge Philos. Soc., 47, 146, 10.1017/S0305004100026451

1968, J. Fluid Mech., 34, 497, 10.1017/S0022112068002041

1953, La Rech. Aero., No., 32, 21

1948, Proc. R. Soc. London Ser. A, 193, 539, 10.1098/rspa.1948.0061

1976, Phys. Fluids, 19, 1109, 10.1063/1.861616

1970, Phys. Fluids, 13, 2925, 10.1063/1.1692883

1950, Proc. R. Soc. London Ser. A, 203, 358, 10.1098/rspa.1950.0143

1935, Math. Mech., 15, 91

1954, J. Mech. Appl. Math., 7, 83, 10.1093/qjmam/7.1.83

1954, Q. J. Mech. Appl. Math., 7, 104, 10.1093/qjmam/7.1.104

1956, J. Aero. Sci., 23, 754, 10.2514/8.3651

1956, Proc. Ind. Acad. Sci. A, 44, 63, 10.1007/BF03048803

1959, J. Fluid Mech., 5, 274, 10.1017/S0022112059000192

1968, J. Fluid Mech., 32, 657, 10.1017/S0022112068000947

1972, J. Méca., 11, 263

1975, J. Fluid Mech., 68, 673, 10.1017/S0022112075001176

1966, J. Fluid Mech., 24, 539, 10.1017/S0022112066000806

1967, Phys. Fluids, 10, 1224, 10.1063/1.1762266