Slow-motion manifolds, dormant instability, and singular perturbations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Benassi, A., and Fouque, J. P. (1988). Hydrodynamic limit for asymmetric simple exclusion processes.Ann. Probability 16 (to appear).
Brunovsky, P., and Fiedler, B. (1988a). Connecting orbits in scalar reaction diffusion equations. I. InDynamics Reported, Vol. 1, John Wiley, New York, pp. 57?89.
Brunovsky, P., and Fiedler, B. (1988)b. Connecting orbits in scalar reaction diffusion equations. II.J. Differential Equations (to appear).
Bongiorno, V., Scriven, L. E., and Davis, H. T. (1976). Molecular theory of fluid interfaces.J. Colloid Interface Sci. 57, 462?475.
Carr, J., and Pego, R. L. (1988). Metastable patterns in solutions ofut, =? 2 uxx-f(u).Comm. Pure Appl. Math., (to appear).
Casten, R. C., and Holland, C. J. (1978). Instability results for reaction diffusion equations with Neumann boundary conditions.J. Differential Equations 27, 266?273.
Fusco, G., and Oliva, W. M. (1988). Jacobi matrices and transversality.Proc. R. Soc. Edinburgh (to appear).
Gantmacher, F. R. (1959).The Theory of Matrices, Vol. 2, Chelsea, New York.
Gurtin, M. E. (1986a). On the two-phase Stefan problem with interfacial energy and entropy.Arch. Rational Mech. Anal. 96, 199?241.
Gurtin, M. E. (1986b). On phase transitions with bulk, interfacial, and boundary energy.Arch. Rational Mech. Anal. 96, 243?264.
Hale, J. K. (1988). Asymptotic behavior of dissipative systems.Math. Surv. Monogr. 25.
Henry, D. (1983). Geometric theory of semilinear parabolic equations.Lect. Notes Math., Am. Math. Soc. 840, Springer-Verlag, New York.
Henry, D. (1985). Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations.J. Differential Equations 53, 165?205.
Matano, H. (1979). Asymptotic behavior and stability of solutions of semilinear diffusion equations.Publ. Res. Inst. Math. Sci. 15, 401?458.
Matano, H. (1982). Nonincrease of lap-number of a solution for a one-dimensional semilinear parabolic equations.J. Fac. Sci. Univ. Tokyo [Sect. IA] 23, 401?441.
Novick-Cohen, A., and Segal, L. A. (1984). Nonlinear aspects of the Cahn-Hilliard equation.Physica D 10, 278?298.
Presutti, E. (1987). Collective behavior of interacting particle systems. InProceedings of the First World Congress of the Bernoully Society, Tashkent, USSR, September 1986, Vol. 1, VNU Scientific Press, Utrecht, The Netherlands, pp. 295?413.