Skin substitutes are more potent than dermal or epidermal substitutes in stimulating endothelial cell sprouting
Tóm tắt
Therapy resistant ulcers are wounds that remain open for a long time period and often arise from chronic venous disease, prolonged pressure or diabetes. For healing of chronic wounds, revitalization of the inert wound bed, which is achieved by angiogenic sprouting of new blood vessels is of great importance. An alternative treatment option to conventional therapies is the use of skin substitutes: dermal (DS), epidermal (ES) or bi-layered skin substitutes (SS). The aim of this study was to determine the mode of action of an autologous SS, ES and DS with regards to endothelial cell proliferation, migration and angiogenic sprouting into a fibrin hydrogel. SS consists of a fully differentiated epidermis expanding over the acellular donor dermis (AD) which has become repopulated with fibroblasts. DS is the same construct as SS but without the epidermis and ES is the same construct as SS but without the fibroblasts. As a control, AD was used throughout. It was found that the bi-layered SS was the most potent substitute in inducing migration and sprouting of endothelial cells. The cross talk between dermis and epidermis resulted in the strongest induction of sprouting via VEGF and uPAR. ES stimulated sprouting more than DS again via VEGF and uPAR. The slight induction of sprouting mediated by DS was not mediated by VEGF, but was in part stimulated through uPAR. This in vitro study supports our clinical observations that a bi-layered SS is a strong stimulator of angiogenesis and therefore has the potential to revitalize an inert wound bed.
Tài liệu tham khảo
Blok CS, Vink L, de Boer EM, van MC, van den Hoogenband HM, Mooij MC, Gauw SA, Vloemans JA, Bruynzeel I, van KA, Kuik J, Waaijman T, Scheper RJ, Gibbs S. Autologous skin substitute for hard-to-heal ulcers: retrospective analysis on safety, applicability, and efficacy in an outpatient and hospitalized setting. Wound Repair Regen. 2013;21:667–76.
Korber A, Klode J, Al-Benna S, Wax C, Schadendorf D, Steinstraesser L, Dissemond J. Etiology of chronic leg ulcers in 31,619 patients in Germany analyzed by an expert survey. J Dtsch Dermatol Ges. 2011;(2):116–21.
Mekkes JR, Loots MA, Van Der Wal AC, Bos JD. Causes, investigation and treatment of leg ulceration. Br J Dermatol. 2003;3:388–401.
Valencia IC, Falabella A, Kirsner RS, Eaglstein WH. Chronic venous insufficiency and venous leg ulceration. J Am Acad Dermatol. 2001;3:401–21 quiz 22-4.
Green J, Jester R, McKinley R, Pooler A. The impact of chronic venous leg ulcers: a systematic review. J Wound Care. 2014;(12):601–12.
Graham ID, Harrison MB, Nelson EA, Lorimer K, Fisher A. Prevalence of lower-limb ulceration: a systematic review of prevalence studies. Adv Skin Wound Care. 2003;(6):305–16.
Marston W, Tang J, Kirsner RS, Ennis W. Wound healing society 2015 update on guidelines for venous ulcers. Wound Repair Regen. 2016;1:136–44.
Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017;18:789–807.
Varkey M, Ding J, Tredget EE. Advances in skin substitutes-potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater. 2015;6(3):547–63.
Gibbs S, van den Hoogenband HM, Kirtschig G, Richters CD, Spiekstra SW, Breetveld M, Scheper RJ, de Boer EM. Autologous full-thickness skin substitute for healing chronic wounds. Br J Dermatol. 2006;(2):267–74.
Iizaka S, Kaitani T, Sugama J, Nakagami G, Naito A, Koyanagi H, Konya C, Sanada H. Predictive validity of granulation tissue color measured by digital image analysis for deep pressure ulcer healing: a multicenter prospective cohort study. Wound Repair Regen. 2013;21(1):25–34.
Spiekstra SW, Breetveld M, Rustemeyer T, Scheper RJ, Gibbs S. Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair Regen. 2007;15(5):708–17.
Uhrin P, Breuss JM. uPAR: a modulator of VEGF-induced angiogenesis. Cell Adhes Migr. 2013;7(1):23–6.
Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153(2):347–58.
Wojtowicz AM, Oliveira S, Carlson MW, Zawadzka A, Rousseau CF, Baksh D. The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair Regen. 2014;22(2):246–55.
Trompezinski S, Denis A, Vinche A, Schmitt D, Viac J. IL-4 and interferon-gamma differentially modulate vascular endothelial growth factor release from normal human keratinocytes and fibroblasts. Exp Dermatol. 2002;11(3):224–31.
Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF, van de Water L. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. 1992;5:1375–9.
Neuss S, Schneider RK, Tietze L, Knuchel R, Jahnen-Dechent W. Secretion of fibrinolytic enzymes facilitates human mesenchymal stem cell invasion into fibrin clots. Cells Tissues Organs. 2010;1:36–46.
Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17(1–2):113–25.
Niessen FB, Spauwen PH, Schalkwijk J, Kon M. On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg. 1999;104(5):1435–58.
Gardien KL, Marck RE, Bloemen MC, Waaijman T, Gibbs S, Ulrich MM, Middelkoop E. Outcome of burns treated with autologous cultured proliferating epidermal cells: a prospective randomized multicenter Intrapatient comparative trial. Cell Transplant. 2016;25(3):437–48.
Monsuur HN, Weijers EM, Niessen FB, Gefen A, Koolwijk P, Gibbs S, van den Broek LJ. Extensive characterization and comparison of endothelial cells derived from dermis and adipose tissue: potential use in tissue engineering. PLoS One. 2016;11:e0167056.
van Hinsbergh VW, Mommaas-Kienhuis AM, Weinstein R, Maciag T. Propagation and morphologic phenotypes of human umbilical cord artery endothelial cells. Eur J Cell Biol. 1986;1:101–10.
Topman G, Sharabani-Yosef O, Gefen A. A standardized objective method for continuously measuring the kinematics of cultures covering a mechanically damaged site. Med Eng Phys. 2012;34(2):225–32.
Koolwijk P, van Erck MG, de Vree WJ, Vermeer MA, Weich HA, Hanemaaijer R, Van Hinsbergh VW. Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol. 1996;6:1177–88.