Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes
Tóm tắt
Từ khóa
Tài liệu tham khảo
LeMieux, M. C. & Bao, Z. N. Flexible electronics: stretching our imagination. Nature Nanotech. 3, 585–586 (2008).
Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Current concepts: nanomedicine. New Engl. J. Med. 363, 2434–2443 (2010).
Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft sobotics for chemists. Angew. Chem. Int. Ed. 50, 1890–1895 (2011).
Cotton, D. P. J., Graz, I. M. & Lacour, S. P. A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens. J. 9, 2008–2009 (2009).
Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009).
Lipomi, D. J., Tee, B. C.-K., Vosgueritchian, M. & Bao, Z. N. Stretchable organic solar cells. Adv. Mater. 23, 1771–1775 (2011).
Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).
Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater. 9, 511–517 (2010).
Kim, R. H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nature Mater. 9, 929–937 (2010).
Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2, 24ra22 (2010).
Graz, I. M., Cotton, D. P. J. & Lacour, S. P. Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 98, 071902 (2009).
Jones, J., Lacour, S. P., Wagner, S. & Suo, Z. G. Stretchable wavy metal interconnects. J. Vac. Sci. Technol. A 22, 1723–1725 (2004).
Tahk, D., Lee, H. H. & Khang, D. Y. Elastic moduli of organic electronic materials by the buckling method. Macromolecules 42, 7079–7083 (2009).
Zhang, Y. Y. et al. Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22, 3027–3031 (2010).
Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).
Feng, C. et al. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 20, 885–891 (2010).
Hu, L. B., Yuan, W., Brochu, P., Gruner, G. & Pei, Q. B. Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94, 161108 (2009).
Yu, Z. B., Niu, X. F., Liu, Z. & Pei, Q. B. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 23, 3989–3994 (2011).
Chun, K. Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nature Nanotech. 5, 853–857 (2010).
Yu, C. J., Masarapu, C., Rong, J. P., Wei, B. Q. & Jiang, H. Q. Stretchable supercapacitors based on buckled single-walled carbon nanotube macrofilms. Adv. Mater. 21, 4793–4797 (2009).
Bekyarova, E. et al. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc 127, 5990–5995 (2005).
Hu, L. B., Hecht, D. S. & Gruner, G. Carbon nanotube thin films: fabrication, properties, and applications. Chem. Rev. 110, 5790–5844 (2010).
Nosho, Y., Ohno, Y., Kishimoto, S. & Mizutani, T. The effects of chemical doping with F(4)TCNQ in carbon nanotube field-effect transistors studied by the transmission-line-model technique. Nanotechnology 18, 415202 (2007).
Khang, D. Y. et al. Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. Nano Lett. 8, 124–130 (2008).
Cao, Q. & Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21, 29–53 (2009).
Jackman, R. J., Duffy, D. C., Cherniavskaya, O. & Whitesides, G. M. Using elastomeric membranes as dry resists and for dry lift-off. Langmuir 15, 2973–2984 (1999).
So, J. H. et al. Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 19, 3632–3637 (2009).
Dickey, M. D. et al. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18, 1097–1104 (2008).
Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010).
Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).
Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).
Sokolov, A. N., Tee, B. C.-K., Bettinger, C. J., Tok, J. B.-H. & Bao, Z. N. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc. Chem. Res. (in the press).