Skill of precipitation projectionin the Chao Phraya river Basinby multi-model ensemble CMIP3-CMIP5

Weather and Climate Extremes - Tập 12 - Trang 1-14 - 2016
S. Supharatid1
1Climate Change and Disaster Center, Rangsit University, Thailand

Tài liệu tham khảo

Arheiner, 2014, Climate impact on floods-change of high-flows on Sweden for the past and future (1911–2100), Hydrol. Earth Syst. Sci. Discuss., 11, 7551, 10.5194/hessd-11-7551-2014 Arnell, 1992, Factors controlling the effects of climate change on river flow regimes in a humid temperate environment, J. Hydrol., 132, 321, 10.1016/0022-1694(92)90184-W Blázquez, 2013, Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models, Clim. Dyn., 41, 1039, 10.1007/s00382-012-1489-7 Brands, 2013, How well do CMIP5 earth system models simulate present climate conditions in Europe and Africa?, Clim. Dyn., 41, 803, 10.1007/s00382-013-1742-8 Cameron, 2006, An application of the UKCIP02 climate change scenarios to flood estimation by continuous simulation for a gauged catchment in the northeast of Scotland, UK (with uncertainty), J. Hydrol., 328, 212, 10.1016/j.jhydrol.2005.12.024 Cattiaux, 2013, European temperatures in CMIP5: origins of present-day biases and future uncertainties, Clim. Dyn., 41, 2889, 10.1007/s00382-013-1731-y Christensen, 2007, A multimodelensemble approach to assessment of climate change impacts on the hydrologyand water resources of the Colorado River Basin, Hydrol. Earth Syst. Sci., 11, 1417, 10.5194/hess-11-1417-2007 IPCC, 2000, Emissions Scenarios, Special Report of the Intergovernmental Panel on Climate Change, 570 IPCC, 2007, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the fourth Assessment Report of the Intergovernmental Panel on Climate Change IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate ChangeAdaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D.Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. ASpecial Report of Working Groups I and II of the Intergovernmental Panel on Climate Change,pp. 109–230. Joetzjer, 2013, Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3, Clim. Dyn., 41, 2921, 10.1007/s00382-012-1644-1 Knutti, R., Abramowitz, G., Collins, M., Eyring, V., Gleckler, P.J., Hewitson, B.M., and Mearns, L. (2010). L.: Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections. Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi Model Climate Projections. IPCC Working Group I Technical Support Unit, University of Bern, Bern. Koutrolis, 2013, Impact of climate change on water resources status: A case study for Crete Island, Greece, J. Hydrol., 479, 146, 10.1016/j.jhydrol.2012.11.055 Kug, 2012, Improved simulation of two types of El Niño inCMIP5 models, Environ. Res. Lett., 7, 034002, 10.1088/1748-9326/7/3/034002 Kumar, 2014, Regional and seasonal intercomparison of CMIP3 and CMIP5 climate model ensembles for temperature and precipitation, Clim. Dyn., 10.1007/s00382-014-2070-3 Lenderink, 2007, Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach, Hydrol. Earth Syst. Sci., 11, 1145, 10.5194/hess-11-1145-2007 Maurer, 2007, Uncertainty in hydrologic impacts of climate changein the Sierra Nevada, California under two emissions scenarios, Clim. Chang., 82 McSweeney, 2014, Selecting CMIP5 GCMs for downscaling over multiple regions, Clim. Dyn. Meehl, 2009, Decadal prediction: can it be skillful?, Bull. Am. Meteorol. Soc., 90, 1467, 10.1175/2009BAMS2778.1 Rogelj, 2012, Global warming under old and new scenarios using IPCC climate sensitivity range estimates, Nat. Clim. Chang., 2, 248, 10.1038/nclimate1385 Seneviratne, S.I., N. nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J.Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. vera, and X. Zhang, 2012:Changes in climate extremes and their impacts on the natural physical environment. In:Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation[Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special Report ofWorking Groups I and II of the Intergovernmental Panel on Climate Change, pp. 109–230. Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M. Allen, S.K. Boschung, J. et al. Climate Change 2013, The physical science basis. working group i contribution to the fifth assessment report of the intergovernmental panel on climate change-abstract for decision-makers. Grouped’expertsintergouvernementalsurl’evolution du climat/Intergovernmental Panel on Climate Change-IPCC, C/O World Meteorological Organization 7bis Ave. De. La. Paix, CP 2300 CH-1211 Geneva 2013 2.(Switzerland) Supharatid, 2016, Assessing potential flood vulnerability to climate change by CMIP3 and CMIP5 models: Case study of the 2011 Thailand great flood, J. Water Clim. Chang., 10.2166/wcc.2015.116 Taylor K.E., Stouffer R.J., Meehl G.A. (2011a) A summary of the CMIP5 experiment design. (Program for Climate Model Diagnosis and Intercomparison (PCMDI), 2011); available online at 〈http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf〉 Taylor K.E., Balaji V., Hankin S., Juckes M., Lawrence B., Pascoe S. (2011b) CMIP5 Data Reference Syntax (DRS) and Controlled Vocabularies (Program for Climate Model Diagnosis and Intercomparison (PCMDI); available online at 〈http://cmippcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_syntax.pdf〉 Taylor, 2012, An overview of CMIP5 and the experimental design, Bull. Am. Meteorol. Soc., 93, 485, 10.1175/BAMS-D-11-00094.1 Teutschbein, 2012, Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456, 12, 10.1016/j.jhydrol.2012.05.052 Tomczak, 1998, Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW) –Crossvalidation / Jackknife approach, J. Geogr. Inf. Decis. Anal, 2, 18 Vasiliades, 2009, Evaluation of astatistical downscaling procedure for the estimation of climatechange impacts on droughts, Nat. Hazards Earth Syst. Sci., 9, 879, 10.5194/nhess-9-879-2009 World Bank (2011) The World Bank supports Thailand’s post-floods recovery effort. Washington D.C.: the World Bank. 〈http://www.worldbank.org/en/news/2011/12/13/world-bank-supports-thailands-post-floods-recovery-effort〉 (last accessed 10 November 2012). Xu, 2005, Modelling hydrological consequences of climate change-progress and challenge, Adv. Atmos. Sci., 22, 789, 10.1007/BF02918679 Arakawa Yatagai, 2009, A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges, SOLA, 5, 137, 10.2151/sola.2009-035