Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat

Springer Science and Business Media LLC - Tập 11 - Trang 1-12 - 2014
Manuela Semmler-Behnke1,2, Jens Lipka2, Alexander Wenk2, Stephanie Hirn3,2, Martin Schäffler2, Furong Tian4,2, Günter Schmid5, Günter Oberdörster6, Wolfgang G Kreyling2,7
1Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
2Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg/Munich, Germany
3Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
4Focus Research Institute, Dublin Institute of Technology, Dublin, Ireland
5Institute of Inorganic Chemistry University Duisburg-Essen, Essen, Germany
6Department of Environmental Medicine, University of Rochester, Rochester, USA
7Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg/Munich, Germany

Tóm tắt

There is evidence that nanoparticles (NP) cross epithelial and endothelial body barriers. We hypothesized that gold (Au) NP, once in the blood circulation of pregnant rats, will cross the placental barrier during pregnancy size-dependently and accumulate in the fetal organism by 1. transcellular transport across the hemochorial placenta, 2. transcellular transport across amniotic membranes 3. transport through ~20 nm wide transtrophoblastic channels in a size dependent manner. The three AuNP sizes used to test this hypothesis are either well below, or of similar size or well above the diameters of the transtrophoblastic channels. We intravenously injected monodisperse, negatively charged, radio-labelled 1.4 nm, 18 nm and 80 nm 198AuNP at a mass dose of 5, 3 and 27 ?g/rat, respectively, into pregnant rats on day 18 of gestation and in non-pregnant control rats and studied the biodistribution in a quantitative manner based on the radio-analysis of the stably labelled 198AuNP after 24 hours. We observed significant biokinetic differences between pregnant and non-pregnant rats. AuNP fractions in the uterus of pregnant rats were at least one order of magnitude higher for each particle size roughly proportional to the enlarged size and weight of the pregnant uterus. All three sizes of 198AuNP were found in the placentas and amniotic fluids with 1.4 nm AuNP fractions being two orders of magnitude higher than those of the larger AuNP on a mass base. In the fetuses, only fractions of 0.0006 (30 ng) and 0.00004 (0.1 ng) of 1.4 nm and 18 nm AuNP, respectively, were detected, but no 80 nm AuNP (<0.000004 (<0.1 ng)). These data show that no AuNP entered the fetuses from amniotic fluids within 24 hours but indicate that AuNP translocation occurs across the placental tissues either through transtrophoblastic channels and/or via transcellular processes. Our data suggest that the translocation of AuNP from maternal blood into the fetus is NP-size dependent which is due to mechanisms involving (1) transport through transtrophoblastic channels ¿ also present in the human placenta ¿ and/or (2) endocytotic and diffusive processes across the placental barrier.

Tài liệu tham khảo

Oberdörster G, Oberdörster E, Oberdörster J: Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect 2005, 113: 823–839. 10.1289/ehp.7339 Mills NL, Amin N, Robinson SD, Anand A, Davies J, Patel D, de la Fuente JM, Cassee FR, Boon NA, Macnee W, Millar AM, Donaldson K, Newby DE: Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med 2006, 173: 426–431. 10.1164/rccm.200506-865OC Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdorster G: Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 2009,21(Suppl 1):55–60. 10.1080/08958370902942517 Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, Kissel T, Parak WJ, Kreyling WG: Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 2010, 31: 6574–6581. 10.1016/j.biomaterials.2010.05.009 Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schaffler M, Schmid G, Simon U, Kreyling WG: Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 2012, 6: 36–46. 10.3109/17435390.2011.552811 Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schaffler M, Takenaka S, Moller W, Schmid G, Simon U, Kreyling WG: Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 2010, 77: 407–416. 10.1016/j.ejpb.2010.12.029 Wiebert P, Sanchez-Crespo A, Falk R, Philipson K, Lundin A, Larsson S, Moller W, Kreyling WG, Svartengren M: No significant translocation of inhaled 35-nm carbon particles to the circulation in humans. Inhal Toxicol 2006, 18: 741–747. 10.1080/08958370600748455 Wiebert P, Sanchez-Crespo A, Seitz J, Falk R, Philipson K, Kreyling WG, Moller W, Sommerer K, Larsson S, Svartengren M: Negligible clearance of ultrafine particles retained in healthy and affected human lungs. Eur Respir J 2006, 28: 286–290. 10.1183/09031936.06.00103805 Möller W, Felten K, Sommerer K, Scheuch G, Meyer G, Meyer P, Haussinger K, Kreyling WG: Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med 2008, 177: 426–432. 10.1164/rccm.200602-301OC Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W: Biodistribution of 1.4- and 18-nm gold particles in rats. Small 2008, 4: 2108–2111. 10.1002/smll.200800922 Kreyling WG, Hirn S, Möller W, Schleh C, Wenk A, Celik G, Lipka J, Schäffler M, Haberl N, Johnston BD, Sperling R, Schmid G, Simon U, Parak WJ, Semmler-Behnke M: Air¿Blood Barrier Translocation of Tracheally Instilled Gold Nanoparticles Inversely Depends on Particle Size. ACS Nano 2013, 8: 222–223. 10.1021/nn403256v Rinderknecht A, Prudhomme R, Poreda R, Gelein R, Corson N, Pidruczny A, Finkelstein J, Oberdörster G, Elder A: Biokinetics of AU nanoparticles relative to size surface coating and portal of entry. 47th Annual Society of Toxicology Meeting; Seattle, WA 2008. Schweitzer AD, Revskaya E, Chu P, Pazo V, Friedman M, Nosanchuk JD, Cahill S, Frases S, Casadevall A, Dadachova E: Melanin-Covered Nanoparticles for Protection of Bone Marrow During Radiation Therapy of Cancer. Int J Radiat Oncol Biol Phys 2010,78(5):1494–1502. 10.1016/j.ijrobp.2010.02.020 Fuchs R, Ellinger I: Endocytic and transcytotic processes in villous syncytiotrophoblast: role in nutrient transport to the human fetus. Traffic 2004, 5: 725–738. 10.1111/j.1600-0854.2004.00221.x Takeda K, Suzuki KI, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M: Nanoparticles Transferred from Pregnant Mice to Their Offspring Can Damage the Genital and Cranial Nerve Systems. J Health Sci 2009, 55: 95–102. 10.1248/jhs.55.95 Sugamata M, Ihara T, Sugamata M, Takeda K: Maternal exposure to diesel exhaust leads to pathological similarity to autism in newborns. J Health Sci 2006, 52: 486–488. 10.1248/jhs.52.486 Sugamata M, Ihara T, Takano H, Oshio S, Takeda K: Maternal diesel exhaust exposure damages newborn murine brains. J Health Sci 2006, 52: 82–84. 10.1248/jhs.52.82 Ritz B, Wilhelm M, Hoggatt KJ, Ghosh JK: Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angeles. Am J Epidemiol 2007, 166: 1045–1052. 10.1093/aje/kwm181 Coggins CRE, Ayres PH, Mosberg AT, Sagartz JW, Hayes AW: Subchronic Inhalation Study in Rats Using Aged and Diluted Sidestream Smoke from a Reference Cigarette. Inhal Toxicol 1993, 5: 77–95. 10.3109/08958379309034495 Witschi H, Lundgaard SM, Rajini P, Hendrickx AG, Last JA: Effects of exposure to nicotine and to sidestream smoke on pregnancy outcome in rats. Toxicol Lett 1994, 71: 279–286. 10.1016/0378-4274(94)90114-7 Gospe SM Jr, Zhou SS, Pinkerton KE: Effects of environmental tobacco smoke exposure in utero and/or postnatally on brain development. Pediatr Res 1996, 39: 494–498. 10.1203/00006450-199603000-00018 Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, Diener PA, Zisch A, Krug HF, von Mandach U: Barrier Capacity of Human Placenta for Nanosized Materials. Environ Health Perspect 2010, 118: 432–436. 10.1289/ehp.0901200 Myllynen PK, Loughran MJ, Howard CV, Sormunen R, Walsh AA, Vahakangas KH: Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol 2008, 26: 130–137. 10.1016/j.reprotox.2008.06.008 Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, Yoshida T, Ogura T, Nabeshi H, Nagano K, Abe Y, Kamada H, Monobe Y, Imazawa T, Aoshima H, Shishido K, Kawai Y, Mayumi T, Tsunoda S, Itoh N, Yoshikaw T, Yanagihara I, Saito S, Tsutsumi Y: Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 2011, 6: 321–328. 10.1038/nnano.2011.41 Keelan JA: Nanotoxicology: Nanoparticles versus the placenta. Nat Nanotechnol 2011, 6: 263–264. 10.1038/nnano.2011.65 Rattanapinyopituk K, Shimada A, Morita T, Sakurai M, Asano A, Hasegawa T, Inoue K, Takano H: Demonstration of the Clathrin- and Caveolin-Mediated Endocytosis at the Maternal-Fetal Barrier in Mouse Placenta after Intravenous Administration of Gold Nanoparticles. J Vet Med Sci 2013, 76: 377–387. 10.1292/jvms.13-0512 Ockleford CD, Whyte A: Differeniated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: coated vesicles. J Cell Sci 1977, 25: 293–312. Ockleford CD, Whyte A, Bowyer DE: Variation in the volume of coated vesicles isoalted from human placenta. Cell Biol Int Rep 1977, 1: 137–146. 10.1016/0309-1651(77)90034-0 Kertschanska S, Kosanke G, Kaufmann P: Pressure dependence of so-called transtrophoblastic channels during fetal perfusion of human placental villi. Microsc Res Tech 1997, 38: 52–62. 10.1002/(SICI)1097-0029(19970701/15)38:1/2<52::AID-JEMT7>3.0.CO;2-W Kertschanska S, Stulcova B, Kaufmann P, Stulc J: Distensible transtrophoblastic channels in the rat placenta. Placenta 2000, 21: 670–677. 10.1053/plac.2000.0558 Knipp GT, Audus KL, Soares MJ: Nutrient transport across the placenta. Adv Drug Deliv Rev 1999, 38: 41–58. 10.1016/S0169-409X(99)00005-8 Schmid G: The relevance of shape and size of Au55 clusters. Chem Soc Rev 2008, 37: 1909–1930. 10.1039/b713631p King BF: A cytological study of plasma membrane modifications, intercellular junctions, and endocytic activity of amniotic epithelium. Anat Rec 1978, 190: 113–125. 10.1002/ar.1091900110 Modena AB, Fieni S: Amniotic fluid dynamics. Acta Biomed 2004,75(Suppl 1):11–13. Saunders M: Transplacental transport of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009, 1: 671–684. 10.1002/wnan.53 Sadauskas E, Jacobsen NR, Danscher G, Stoltenberg M, Vogel U, Larsen A, Kreyling W, Wallin H: Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation. Chem Central J 2009, 3: 16. 10.1186/1752-153X-3-16 Workshop IRSI: The relevance of the rat lung response to particle overload for human risk assessment: A workshop consensus report. Inhal Toxicol 2000, 12: 1–17. Conner SD, Schmid SL: Regulated portals of entry into the cell. Nature 2003, 422: 37–44. 10.1038/nature01451 Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W: Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage. Small 2009, 5: 2067–2076. 10.1002/smll.200900466 Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 2008, 105: 14265–14270. 10.1073/pnas.0805135105 Lynch I, Dawson KA: Protein-nanoparticle interactions. Nano Today 2008, 3: 40–47. 10.1016/S1748-0132(08)70014-8 Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson KA: Physical-Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. J Am Chem Soc 2010, 1-10. Schäffler M, Sousa F, Wenk A, Sitia L, Hirn S, Schleh C, Haberl N, Violatto M, Canovi M, Andreozzi P, Salmona M, Bigini P, Kreyling WG, Krol S: Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials 2014, 35: 3455–3466. 10.1016/j.biomaterials.2013.12.100 Cheung CY, Brace RA: Amniotic fluid volume and composition in mouse pregnancy. J Soc Gynecol Investig 2005, 12: 558–562. 10.1016/j.jsgi.2005.08.008 Robertson P, Faber JJ, Brace RA, Louey S, Hohimer AR, Davis LE, Anderson DF: Responses of amniotic fluid volume and its four major flows to lung liquid diversion and amniotic infusion in the ovine fetus. Reprod Sci 2009, 16: 88–93. 10.1177/1933719108324888 Underwood MA, Gilbert WM, Sherman MP: Amniotic Fluid: Not Just Fetal Urine Anymore. J Perinatol 2005, 25: 341–348. 10.1038/sj.jp.7211290 Lutz HG: Clusters and Colloids. From Theory to Applications. VCH Verlagsgesellschaft, Weinheim/VCH Publishers, New York; 1995. Tominaga T, Tenma S, Watanabe H, Giebel U, Schmid G: Tracer Diffusion of a Ligand-Stabilized Two-Shell Gold Cluster. Chem Lett 1996, 25: 1033–1034. 10.1246/cl.1996.1033 Möller W, Gibson N, Geiser M, Pokhrel S, Wenk A, Takenaka S, Schmid O, Bulgheroni A, Simonelli F, Kozempel J, Holzwarth U, Wigge C, Eigeldinger-Berthou S, Mädler L, Kreyling W: Gold nanoparticle aerosols for rodent inhalation and translocation studies. J Nanoparticle Res 2013, 15: 1–13. 10.1007/s11051-013-1574-9 Semmler-Behnke M, Kreyling WG, Schulz H, Takenaka S, Butler JP, Henry FS, Tsuda A: Nanoparticle delivery in infant lungs. Proc Natl Acad Sci U S A 2012, 109: 5092–5097. 10.1073/pnas.1119339109 Hainfeld JF, O'Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowitz HM: Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol 2011, 84: 526–533. 10.1259/bjr/42612922 Khlebtsov N, Dykman L: Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 2011, 40: 1647–1671. 10.1039/c0cs00018c Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L: Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 2004, 11: 169–183. 10.1080/10717540490433895 Kim Y, Lobatto ME, Kawahara T, Lee Chung B, Mieszawska AJ, Sanchez-Gaytan BL, Fay F, Senders ML, Calcagno C, Becraft J, Tun Saung M, Gordon R, Stroes ES, Ma M, Farokhzad OC, Fayad ZA, Mulder WJ, Langer R: Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci U S A 2014, 111: 1078–1083. 10.1073/pnas.1322725111 Mieszawska AJ, Kim Y, Gianella A, van Rooy I, Priem B, Labarre MP, Ozcan C, Cormode DP, Petrov A, Langer R, Farokhzad OC, Fayad ZA, Mulder WJ: Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy. Bioconjug Chem 2013, 24: 1429–1434. 10.1021/bc400166j Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003, 348: 2491–2499. 10.1056/NEJMoa022749 Lobatto ME, Fuster V, Fayad ZA, Mulder WJ: Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov 2011, 10: 835–852. 10.1038/nrd3578 McArdle HJ, Andersen HS, Jones H, Gambling L: Copper and Iron Transport Across the Placenta: Regulation and Interactions. J Neuroendocrinol 2008, 20: 427–431. 10.1111/j.1365-2826.2008.01658.x Turkevitch J, Stevenson PC, Hillier J: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 1951, 11: 55–75. 10.1039/df9511100055 Schmid G, Lehnert A: The Complexation of Gold Colloids. Angew Chem Int Ed 1989, 28: 780–781. 10.1002/anie.198907801 Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdorster G, Kreyling WG: Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 2004, 16: 453–459. 10.1080/08958370490439650 Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P, Oberdorster G, Kreyling WG: Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 2007, 115: 728–733. 10.1289/ehp.9685 Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A: Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health-Part A 2002, 65: 1513–1530. 10.1080/00984100290071649