Size-dependent nonlinear vibration of an electrostatic nanobeam actuator considering surface effects and inter-molecular interactions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)
Azizi, S., Ghazavi, M.R., Rezazadeh, G., Ahmadian, I., Cetinkaya, C.: Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dyn. 76(1), 839–852 (2014)
Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)
Chen, X., Meguid, S.: Snap-through buckling of initially curved microbeam subject to an electrostatic force. Proc. R. Soc. A 471(2177), 20150072 (2015)
Chen, X., Meguid, S.: Asymmetric bifurcation of thermally and electrically actuated functionally graded material microbeam. Proc. R. Soc. A 472(2186), 20150597 (2016)
Chen, X., Meguid, S.: Dynamic behavior of micro-resonator under alternating current voltage. Int. J. Mech. Mater. Des. 13(4), 481–497 (2017a)
Chen, X., Meguid, S.: Nonlinear vibration analysis of a microbeam subject to electrostatic force. Acta Mech. 228(4), 1343–1361 (2017b)
Dequesnes, M., Rotkin, S., Aluru, N.: Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13(1), 120 (2002)
Ebrahimi, F., Barati, M.R.: Damping vibration behavior of visco-elastically coupled double-layered graphene sheets based on nonlocal strain gradient theory. Microsyst. Technol. 24(3), 1643–1658 (2018)
Eltaher, M., Agwa, M., Mahmoud, F.: Nanobeam sensor for measuring a zeptogram mass. Int. J. Mech. Mater. Des. 12(2), 211–221 (2016)
Fleck, N., Hutchinson, J.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)
Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)
Gupta, R.K.: Electrostaticpull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (MEMS). Ph.D. thesis, Citeseer (1998)
Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)
Hoseinzadeh, M., Khadem, S.: A nonlocal shell theory model for evaluation of thermoelastic damping in the vibration of a double-walled carbon nanotube. Phys. E 57, 6–11 (2014)
Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B Eng. 52, 199–206 (2013)
Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, Cambridge (2011)
Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of nems-based sensors. Nanotechnology 20(27), 275501 (2009)
Kambali, P.N., Nikhil, V., Pandey, A.K.: Surface and nonlocal effects on response of linear and nonlinear NEMS devices. Appl. Math. Modell. 43, 252–267 (2017)
Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)
Lamoreaux, S.K.: The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68(1), 201 (2004)
Lim, C., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)
Liu, C.C.: Dynamic behavior analysis of cantilever-type nano-mechanical electrostatic actuator. Int. J. Non-Linear Mech. 82, 124–130 (2016)
Ma, J.B., Jiang, L., Asokanthan, S.F.: Influence of surface effects on the pull-in instability of nems electrostatic switches. Nanotechnology 21(50), 505708 (2010)
Mehrdad Pourkiaee, S., Khadem, S.E., Shahgholi, M.: Nonlinear vibration and stability analysis of an electrically actuated piezoelectric nanobeam considering surface effects and intermolecular interactions. J. Vib. Control 23(12), 1873–1889 (2017)
Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., Fathi, M.: Nano-resonator frequency response based on strain gradient theory. J. Phys. D Appl. Phys. 47(36), 365303 (2014)
Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N.: Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsyst. Technol. 21(2), 457–464 (2015)
Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)
Moghimi Zand, M., Ahmadian, M.: Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(9), 2037–2047 (2010)
Mohammadi, M., Eghtesad, M., Mohammadi, H.: Stochastic analysis of dynamic characteristics and pull-in instability of FGM micro-switches with uncertain parameters in thermal environments. Int. J. Mech. Mater. Des. 14(3), 417–442 (2018)
Najar, F., El-Borgi, S., Reddy, J., Mrabet, K.: Nonlinear nonlocal analysis of electrostatic nanoactuators. Compos. Struct. 120, 117–128 (2015)
Nayfeh, A.: Introduction to perturbation techniques. Wiley classics library, Wiley. https://books.google.com/books?id=kzbvAAAAMAAJ (1981). Accessed 10 Sept 2018
Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48(1–2), 153–163 (2007)
Nikpourian, A., Ghazavi, M.R., Azizi, S.: On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories. Int. J. Mech. Mater. Des. 14, 1–19 (2016)
Ouakad, H.M., El-Borgi, S., Mousavi, S.M., Friswell, M.I.: Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory. Appl. Math. Modell. 62, 207–222 (2018)
Pradiptya, I., Ouakad, H.M.: Size-dependent behavior of slacked carbon nanotube actuator based on the higher-order strain gradient theory. Int. J. Mech. Mater. Des. 14(3), 393–415 (2018)
Sharabiani, P.A., Yazdi, M.R.H.: Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos. Part B Eng. 45(1), 581–586 (2013)
Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)
Vatankhah, R., Kahrobaiyan, M., Alasty, A., Ahmadian, M.: Nonlinear forced vibration of strain gradient microbeams. Appl. Math. Modell. 37(18–19), 8363–8382 (2013)
Wang, K., Wang, B.: Influence of surface energy on the non-linear pull-in instability of nano-switches. Int. J. Non-Linear Mech. 59, 69–75 (2014)
Wang, X.: Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications. Elsevier Science. https://books.google.com/books?id=7SXbBQAAQBAJ (2015). Accessed 10 Sept 2018
Yang, J., Jia, X., Kitipornchai, S.: Pull-in instability of nano-switches using nonlocal elasticity theory. J. Phys. D Appl. Phys. 41(3), 035103 (2008)
Yang, W., Wang, X.: Nonlinear pull-in instability of carbon nanotubes reinforced nano-actuator with thermally corrected Casimir force and surface effect. Int. J. Mech. Sci. 107, 34–42 (2016)
Yang, W., Li, Y., Wang, X.: Scale-dependent dynamic-pull-in of functionally graded carbon nanotubes reinforced nanodevice with piezoelectric layer. J. Aerosp. Eng. 30(3), 04016096 (2016a)
Yang, W., Yang, F., Wang, X.: Coupling influences of nonlocal stress and strain gradients on dynamic pull-in of functionally graded nanotubes reinforced nano-actuator with damping effects. Sensors Actuators A Phys. 248, 10–21 (2016b)
Yang, Y.T., Callegari, C., Feng, X., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nanoletters 6(4), 583–586 (2006)