Size controlled hydroxyapatite and calcium carbonate particles: Synthesis and their application as templates for SERS platform
Tài liệu tham khảo
Volodkin, 2010, Pure protein microspheres by calcium carbonate templating, Angew. Chem. Int. Ed. Engl., 49, 9258, 10.1002/anie.201005089
Svenskaya, 2013, Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer, Biophys. Chem., 182, 11, 10.1016/j.bpc.2013.07.006
Peng, 2010, Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles, Colloids Surf. A., 353, 132, 10.1016/j.colsurfa.2009.11.004
Yashchenok, 2010, Enzyme reaction in the pores of CaCO3 particles upon ultrasound disruption of attached substrate-filled liposomes, Angew. Chem. Int. Ed. Engl., 49, 8116, 10.1002/anie.201003244
Volodkin, 2004, Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation, Langmuir, 20, 3398, 10.1021/la036177z
Rhee, 2002, Synthesis of hydroxyapatite via mechanochemical treatment, Biomaterials, 23, 1147, 10.1016/S0142-9612(01)00229-0
Schüth, 2002
Hench, 1998, Biomaterials: a forecast for the future, Biomaterials, 19, 1419, 10.1016/S0142-9612(98)00133-1
Palazzo, 2007, Biomimetic hydroxyapatite–drug nanocrystals as potential bone substitutes with antitumor drug delivery properties, Adv. Funct. Mater., 17, 2180, 10.1002/adfm.200600361
Roohani-Esfahani, 2010, The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites, Biomaterials, 31, 5498, 10.1016/j.biomaterials.2010.03.058
Paul, 2003, Ceramic drug delivery: a perspective, J. Biomater. Appl., 17, 253, 10.1177/0885328203017004001
Itokazu, 1998, Development of porous apatite ceramic for local delivery of chemotherapeutic agents, J. Biomed. Mater. Res., 39, 536, 10.1002/(SICI)1097-4636(19980315)39:4<536::AID-JBM5>3.0.CO;2-K
Kano, 1994, Application of hydroxyapatite–sol as drug carrier, Biomed. Mater. Eng., 4, 283
Uchida, 1992, Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic, J. Orthop. Res., 10, 440, 10.1002/jor.1100100317
Shirkhanzadeh, 2005, Microneedles coated with porous calcium phosphate ceramics: effective vehicles for transdermal delivery of solid trehalose, J. Mater. Sci. Mater. Med., 16, 37, 10.1007/s10856-005-6444-2
Edwards, 1997, Large porous particles for pulmonary drug delivery, Science, 276, 1868, 10.1126/science.276.5320.1868
Rajaraman, 2005, A unique fabrication approach for microneedles using coherent porous silicon technology, Sens. Actuators B, 105, 443, 10.1016/j.snb.2004.06.035
Prausnitz, 2004, Microneedles for transdermal drug delivery, Adv. Drug Deliv. Rev., 56, 581, 10.1016/j.addr.2003.10.023
Zhao, 2006, Polyelectrolyte microcapsules templated on poly(styrene sulfonate)-doped CaCO3 particles for loading and sustained release of daunorubicin and doxorubicin, Eur. Polym. J., 42, 3341, 10.1016/j.eurpolymj.2006.09.005
Bukreeva, 2009, Formation of silver nanoparticles on shells of polyelectrolyte capsules using silver-mirror reaction, Colloid J., 71, 596, 10.1134/S1061933X09050032
Yashchenok, 2012, Nanoplasmonic smooth silica versus porous calcium carbonate bead biosensors for detection of biomarkers, Ann. Phys., 524, 723, 10.1002/andp.201200158
Chang, 2010, In situ growth of silver nanoparticles in porous membranes for surface-enhanced raman scattering, ACS Appl. Mater. Interfaces, 2, 3333, 10.1021/am100758k
Wi, 2012, Porous gold nanodisks with multiple internal hot spots, Phys. Chem. Chem. Phys., 14, 9131, 10.1039/c2cp40578d
Stetciura, 2013, New surface-enhanced Raman scattering platforms: composite calcium carbonate microspheres coated with astralen and silver nanoparticles, Langmuir, 29, 4140, 10.1021/la305117t
Ahijado-Guzmán, 2012, Surface-enhanced Raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements, ACS Nano, 6, 7514, 10.1021/nn302825u
Schmuck, 2007, Direct and label-free detection of solid-phase-bound compounds by using surface-enhanced Raman scattering microspectroscopy, Angew. Chem. Int. Ed. Engl., 46, 4786, 10.1002/anie.200605190
Gellner, 2011, Plasmonically active micron-sized beads for integrated solid-phase synthesis and label-free SERS analysis, Chem. Commun. (Cambridge, U.K.), 47, 12762, 10.1039/c1cc13562g
Parakhonskiy, 2012, Sub-micrometer vaterite containers: synthesis, substance loading, and release, Angew. Chem. Int. Ed. Engl., 51, 1195, 10.1002/anie.201104316
Andreassen, 2005, Formation mechanism and morphology in precipitation of vaterite–nano-aggregation or crystal growth?, J. Cryst. Growth, 274, 256, 10.1016/j.jcrysgro.2004.09.090
Yashchenok, 2013, Polyelectrolyte multilayer microcapsules templated on spherical, elliptical and square calcium carbonate particles, J. Mater. Chem. B, 1, 1223, 10.1039/c2tb00416j
Yoshimura, 2004, Hydrothermal conversion of calcite crystals to hydroxyapatite, Mater. Sci. Eng. C: Mater. Biol. Appl., 24, 521, 10.1016/j.msec.2004.01.005
Braun, 2007, Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots, J. Am. Chem. Soc., 129, 7760, 10.1021/ja072533e
Lee, 2010, Dispersion in the SERS enhancement with silver nanocube dimers, ACS Nano, 4, 5763, 10.1021/nn101484a
Wu, 2012, Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array, Small, 8, 2878, 10.1002/smll.201200712
Kneipp, 1997, Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett., 78, 1667, 10.1103/PhysRevLett.78.1667
Gaumet, 2008, Nanoparticles for drug delivery: the need for precision in reporting particle size parameters, Eur. J. Pharm. Biopharm., 69, 1, 10.1016/j.ejpb.2007.08.001