Size and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for treatment of acute kidney injury and fibrosis
Tài liệu tham khảo
Hoste, 2018, Global epidemiology and outcomes of acute kidney injury, Nat. Rev. Nephrol., 14, 607, 10.1038/s41581-018-0052-0
Zuk, 2016, Acute kidney injury, Annu. Rev. Med., 67, 293, 10.1146/annurev-med-050214-013407
Lameire, 2013, Acute kidney injury: an increasing global concern, Lancet, 382, 170, 10.1016/S0140-6736(13)60647-9
Hoste, 2015, Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study, Intensive Care Med., 41, 1411, 10.1007/s00134-015-3934-7
Ferenbach, 2015, Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD, Nat. Rev. Nephrol., 11, 264, 10.1038/nrneph.2015.3
Matejovic, 2016, Renal hemodynamics in AKI: in search of new treatment targets, J. Am. Soc. Nephrol., 27, 49, 10.1681/ASN.2015030234
Liu, 2018, Renal tubule injury: a driving force toward chronic kidney disease, Kidney Int., 93, 568, 10.1016/j.kint.2017.09.033
Leung, 2013, Chronic kidney disease following acute kidney injury-risk and outcomes, Nat. Rev. Nephrol., 9, 77, 10.1038/nrneph.2012.280
Sharif, 2016, The global nephrology workforce: emerging threats and potential solutions!, Clin. Kidney J., 9, 11, 10.1093/ckj/sfv111
Kamaly, 2016, Nanomedicines for renal disease: current status and future applications, Nat. Rev. Nephrol., 12, 738, 10.1038/nrneph.2016.156
Williams, 2016, Nanomedicines for kidney diseases, Kidney Int., 90, 740, 10.1016/j.kint.2016.03.041
Tietjen, 2017, Nanoparticle targeting to the endothelium during normothermic machine perfusion of human kidneys, Sci. Transl. Med., 9, 10.1126/scitranslmed.aam6764
Wang, 2017, Peptide and antibody ligands for renal targeting: nanomedicine strategies for kidney disease, Biomater. Sci., 5, 1450, 10.1039/C7BM00271H
Williams, 2015, Mesoscale nanoparticles selectively target the renal proximal tubule epithelium, Nano Lett., 15, 2358, 10.1021/nl504610d
Gao, 2014, Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing, Theranostics, 4, 1039, 10.7150/thno.7866
Lawrence, 2017, Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules, Proc. Natl. Acad. Sci. U. S. A., 114, 2958, 10.1073/pnas.1616457114
von Roemeling, 2017, Breaking down the barriers to precision cancer nanomedicine, Trends Biotechnol., 35, 159, 10.1016/j.tibtech.2016.07.006
Satchell, 2013, The role of the glomerular endothelium in albumin handling, Nat. Rev. Nephrol., 9, 717, 10.1038/nrneph.2013.197
Alidori, 2016, Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury, Sci. Transl. Med., 8, 331, 10.1126/scitranslmed.aac9647
Qiao, 2014, Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan, Biomaterials, 35, 7157, 10.1016/j.biomaterials.2014.04.106
Jiang, 2018, DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury, Nat. Biomed. Eng., 2, 865, 10.1038/s41551-018-0317-8
Malek, 2015, Renal ischemia/reperfusion injury; from pathophysiology to treatment, J. Ren. Inj. Prev., 4, 20
Andersson, 2007, Mild renal ischemia-reperfusion reduces charge and size selectivity of the glomerular barrier, Am. J. Physiol. Renal. Physiol., 292, 1802, 10.1152/ajprenal.00152.2006
Tyritzis, 2011, Effects of prolonged warm and cold ischemia in a solitary kidney animal model after partial nephrectomy: an ultrastructural investigation, Ultrastruct. Pathol., 35, 60, 10.3109/01913123.2010.542880
Rippe, 2006, Nature of glomerular capillary permeability changes following acute renal ischemia-reperfusion injury in rats, Am. J. Physiol. Renal. Physiol., 291, 1362, 10.1152/ajprenal.00123.2006
Shelton, 2013, Role of Nrf2 in protection against acute kidney injury, Kidney Int., 84, 1090, 10.1038/ki.2013.248
Nezu, 2017, Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression, Kidney Int., 91, 387, 10.1016/j.kint.2016.08.023
Ruiz, 2013, Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease, Kidney Int., 83, 1029, 10.1038/ki.2012.439
Chan, 2009, PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery, Biomaterials, 30, 1627, 10.1016/j.biomaterials.2008.12.013
Zhang, 2008, Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform, ACS Nano, 2, 1696, 10.1021/nn800275r
Tampe, 2017, Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression, Kidney Int., 91, 157, 10.1016/j.kint.2016.07.042
Ge, 2018, GCN2 is a potential prognostic biomarker for human papillary renal cell carcinoma, Cancer Biomark., 22, 395, 10.3233/CBM-170922
Yuste, 2015, Pathogenesis of glomerular haematuria, World J. Nephrol., 4, 185, 10.5527/wjn.v4.i2.185
Castrop, 2017, Novel routes of albumin passage across the glomerular filtration barrier, Acta Physiol., 219, 544, 10.1111/apha.12760
Wang, 2009, Segment-specific expression of netrin-1 receptors in normal and ischemic mouse kidney, Am. J. Nephrol., 30, 186, 10.1159/000213503
Ma, 2013, Role of nrf2 in oxidative stress and toxicity, Annu. Rev. Pharmacol. Toxicol., 53, 401, 10.1146/annurev-pharmtox-011112-140320
Joo, 2013, miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury, Cell Death Dis., 4, e899, 10.1038/cddis.2013.427
Atilano-Roque, 2016, Nrf2 activators as potential modulators of injury in human kidney cells, Toxicol Rep, 3, 153, 10.1016/j.toxrep.2016.01.006
Kong, 2018, Nrf2 deficiency promotes the progression from acute tubular damage to chronic renal fibrosis following unilateral ureteral obstruction, Nephrol. Dial. Transplant., 33, 771, 10.1093/ndt/gfx299
Moeller, 2013, Renal albumin filtration: alternative models to the standard physical barriers, Nat. Rev. Nephrol., 9, 266, 10.1038/nrneph.2013.58
Liu, 2014, The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice, Kidney Int., 85, 134, 10.1038/ki.2013.357