Size and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for treatment of acute kidney injury and fibrosis

Biomaterials - Tập 219 - Trang 119368 - 2019
Hang Yu1,2, Tingsheng Lin1,2, Wei Chen1,2, Wenmin Cao1,2, Chengwei Zhang1,2, Tianwei Wang1,2, Meng Ding1,2, Sheng Zhao3, Hui Wei3, Hongqian Guo1,2, Xiaozhi Zhao1,2
1Department of Urology, Nanjing Drum Tower Hospital, Medical School of Nanjing University Nanjing, Jiangsu, 210008, China
2Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
3Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210093, China

Tài liệu tham khảo

Hoste, 2018, Global epidemiology and outcomes of acute kidney injury, Nat. Rev. Nephrol., 14, 607, 10.1038/s41581-018-0052-0 Zuk, 2016, Acute kidney injury, Annu. Rev. Med., 67, 293, 10.1146/annurev-med-050214-013407 Lameire, 2013, Acute kidney injury: an increasing global concern, Lancet, 382, 170, 10.1016/S0140-6736(13)60647-9 Hoste, 2015, Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study, Intensive Care Med., 41, 1411, 10.1007/s00134-015-3934-7 Ferenbach, 2015, Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD, Nat. Rev. Nephrol., 11, 264, 10.1038/nrneph.2015.3 Matejovic, 2016, Renal hemodynamics in AKI: in search of new treatment targets, J. Am. Soc. Nephrol., 27, 49, 10.1681/ASN.2015030234 Liu, 2018, Renal tubule injury: a driving force toward chronic kidney disease, Kidney Int., 93, 568, 10.1016/j.kint.2017.09.033 Leung, 2013, Chronic kidney disease following acute kidney injury-risk and outcomes, Nat. Rev. Nephrol., 9, 77, 10.1038/nrneph.2012.280 Sharif, 2016, The global nephrology workforce: emerging threats and potential solutions!, Clin. Kidney J., 9, 11, 10.1093/ckj/sfv111 Kamaly, 2016, Nanomedicines for renal disease: current status and future applications, Nat. Rev. Nephrol., 12, 738, 10.1038/nrneph.2016.156 Williams, 2016, Nanomedicines for kidney diseases, Kidney Int., 90, 740, 10.1016/j.kint.2016.03.041 Tietjen, 2017, Nanoparticle targeting to the endothelium during normothermic machine perfusion of human kidneys, Sci. Transl. Med., 9, 10.1126/scitranslmed.aam6764 Wang, 2017, Peptide and antibody ligands for renal targeting: nanomedicine strategies for kidney disease, Biomater. Sci., 5, 1450, 10.1039/C7BM00271H Williams, 2015, Mesoscale nanoparticles selectively target the renal proximal tubule epithelium, Nano Lett., 15, 2358, 10.1021/nl504610d Gao, 2014, Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing, Theranostics, 4, 1039, 10.7150/thno.7866 Lawrence, 2017, Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules, Proc. Natl. Acad. Sci. U. S. A., 114, 2958, 10.1073/pnas.1616457114 von Roemeling, 2017, Breaking down the barriers to precision cancer nanomedicine, Trends Biotechnol., 35, 159, 10.1016/j.tibtech.2016.07.006 Satchell, 2013, The role of the glomerular endothelium in albumin handling, Nat. Rev. Nephrol., 9, 717, 10.1038/nrneph.2013.197 Alidori, 2016, Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury, Sci. Transl. Med., 8, 331, 10.1126/scitranslmed.aac9647 Qiao, 2014, Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan, Biomaterials, 35, 7157, 10.1016/j.biomaterials.2014.04.106 Jiang, 2018, DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury, Nat. Biomed. Eng., 2, 865, 10.1038/s41551-018-0317-8 Malek, 2015, Renal ischemia/reperfusion injury; from pathophysiology to treatment, J. Ren. Inj. Prev., 4, 20 Andersson, 2007, Mild renal ischemia-reperfusion reduces charge and size selectivity of the glomerular barrier, Am. J. Physiol. Renal. Physiol., 292, 1802, 10.1152/ajprenal.00152.2006 Tyritzis, 2011, Effects of prolonged warm and cold ischemia in a solitary kidney animal model after partial nephrectomy: an ultrastructural investigation, Ultrastruct. Pathol., 35, 60, 10.3109/01913123.2010.542880 Rippe, 2006, Nature of glomerular capillary permeability changes following acute renal ischemia-reperfusion injury in rats, Am. J. Physiol. Renal. Physiol., 291, 1362, 10.1152/ajprenal.00123.2006 Shelton, 2013, Role of Nrf2 in protection against acute kidney injury, Kidney Int., 84, 1090, 10.1038/ki.2013.248 Nezu, 2017, Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression, Kidney Int., 91, 387, 10.1016/j.kint.2016.08.023 Ruiz, 2013, Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease, Kidney Int., 83, 1029, 10.1038/ki.2012.439 Chan, 2009, PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery, Biomaterials, 30, 1627, 10.1016/j.biomaterials.2008.12.013 Zhang, 2008, Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform, ACS Nano, 2, 1696, 10.1021/nn800275r Tampe, 2017, Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression, Kidney Int., 91, 157, 10.1016/j.kint.2016.07.042 Ge, 2018, GCN2 is a potential prognostic biomarker for human papillary renal cell carcinoma, Cancer Biomark., 22, 395, 10.3233/CBM-170922 Yuste, 2015, Pathogenesis of glomerular haematuria, World J. Nephrol., 4, 185, 10.5527/wjn.v4.i2.185 Castrop, 2017, Novel routes of albumin passage across the glomerular filtration barrier, Acta Physiol., 219, 544, 10.1111/apha.12760 Wang, 2009, Segment-specific expression of netrin-1 receptors in normal and ischemic mouse kidney, Am. J. Nephrol., 30, 186, 10.1159/000213503 Ma, 2013, Role of nrf2 in oxidative stress and toxicity, Annu. Rev. Pharmacol. Toxicol., 53, 401, 10.1146/annurev-pharmtox-011112-140320 Joo, 2013, miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury, Cell Death Dis., 4, e899, 10.1038/cddis.2013.427 Atilano-Roque, 2016, Nrf2 activators as potential modulators of injury in human kidney cells, Toxicol Rep, 3, 153, 10.1016/j.toxrep.2016.01.006 Kong, 2018, Nrf2 deficiency promotes the progression from acute tubular damage to chronic renal fibrosis following unilateral ureteral obstruction, Nephrol. Dial. Transplant., 33, 771, 10.1093/ndt/gfx299 Moeller, 2013, Renal albumin filtration: alternative models to the standard physical barriers, Nat. Rev. Nephrol., 9, 266, 10.1038/nrneph.2013.58 Liu, 2014, The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice, Kidney Int., 85, 134, 10.1038/ki.2013.357