Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates

Nature Materials - Tập 14 Số 6 - Trang 643-651 - 2015
Omid Veiseh1, Joshua C. Doloff1, Minglin Ma1, Arturo J. Vegas1, Hok Hei Tam1, Andrew Bader1, Jie Li1, Erin Langan1, Jeffrey Wyckoff1, Whitney S. Loo2, Siddharth Jhunjhunwala1, Alan Chiu1, Sean M. Siebert1, Katherine Tang1, Jennifer Hollister‐Lock3, Stephanie Aresta-Dasilva1, Matthew A. Bochenek4, Joshua E. Mendoza-Elias4, Yong Wang4, Meirigeng Qi4, Danya M. Lavin1, Michael Chen1, Nimit Dholakia1, Raj Thakrar5, Igor Lacı́k6, Gordon C. Weir3, José Oberholzer4, Dale L. Greiner7, Róbert Langer2, Daniel G. Anderson5
1David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02139, USA,
2Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, USA.
3Research Division, Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA
4Division of Transplantation, Department of Surgery, University of Illinois at Chicago, 840 South Wood Street, Chicago, Illinois 60612, USA,
5Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, Massachusetts 02115, USA,
6Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
7Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kearney, C. J. & Mooney, D. J. Macroscale delivery systems for molecular and cellular payloads. Nature Mater. 12, 1004–1017 (2013).

Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4, 122ra121 (2012).

Nichols, S. P., Koh, A., Storm, W. L., Shin, J. H. & Schoenfisch, M. H. Biocompatible materials for continuous glucose monitoring devices. Chem. Rev. 113, 2528–2549 (2013).

Rosen, M. R., Robinson, R. B., Brink, P. R. & Cohen, I. S. The road to biological pacing. Nature Rev. Cardiol. 8, 656–666 (2011).

Hubbell, J. A. & Langer, R. Translating materials design to the clinic. Nature Mater. 12, 963–966 (2013).

Franz, S., Rammelt, S., Scharnweber, D. & Simon, J. C. Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32, 6692–6709 (2011).

Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

Williams, D. F. On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008).

Ratner, B. D. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J. Control. Release 78, 211–218 (2002).

Bryers, J. D., Giachelli, C. M. & Ratner, B. D. Engineering biomaterials to integrate and heal: The biocompatibility paradigm shifts. Biotechnol. Bioeng. 109, 1898–1911 (2012).

Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nature Biotechnol. 31, 553–556 (2013).

Smith, R. S. et al. Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Sci. Transl. Med. 4, 153ra132 (2012).

Ma, M. et al. Development of cationic polymer coatings to regulate foreign-body responses. Adv. Mater. 23, H189–H194 (2011).

Rodriguez, P. L. et al. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

Kim, Y. K., Que, R., Wang, S. W. & Liu, W. F. Modification of biomaterials with a self-protein inhibits the macrophage response. Adv. Healthc. Mater. 3, 989–994 (2014).

Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA 107, 15211–15216 (2010).

Kusaka, T. et al. Effect of silica particle size on macrophage inflammatory responses. PLoS ONE 9, e92634 (2014).

Zandstra, J. et al. Microsphere size influences the foreign body reaction. Eur. Cells Mater. 28, 335–347 (2014).

Matlaga, B. F., Yasenchak, L. P. & Salthouse, T. N. Tissue response to implanted polymers: The significance of sample shape. J. Biomed. Mater. Res. 10, 391–397 (1976).

Salthouse, T. N. Some aspects of macrophage behavior at the implant interface. J. Biomed. Mater. Res. 18, 395–401 (1984).

Helton, K. L., Ratner, B. D. & Wisniewski, N. A. Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and the foreign body response-part I: Theoretical framework. J. Diabetes Sci. Technol. 5, 632–646 (2011).

Brauker, J. H. et al. Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 29, 1517–1524 (1995).

Ward, W. K., Slobodzian, E. P., Tiekotter, K. L. & Wood, M. D. The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials 23, 4185–4192 (2002).

Lee, K. Y. & Mooney, D. J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

Whelehan, M. & Marison, I. W. Microencapsulation using vibrating technology. J. Microencapsulation 28, 669–688 (2011).

Lim, F. & Sun, A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–910 (1980).

Scharp, D. W. & Marchetti, P. Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution. Adv. Drug Deliv. Rev. 67–68, 35–73 (2014).

Dolgin, E. Encapsulate this. Nature Med. 20, 9–11 (2014).

Dang, T. T. et al. Spatiotemporal effects of a controlled-release anti-inflammatory drug on the cellular dynamics of host response. Biomaterials 32, 4464–4470 (2011).

King, A., Sandler, S. & Andersson, A. The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J. Biomed. Mater. Res. 57, 374–383 (2001).

Kolb, M. et al. Differences in the fibrogenic response after transfer of active transforming growth factor-β1 gene to lungs of “fibrosis-prone” and “fibrosis-resistant” mouse strains. Am. J. Respir. Cell Mol. Biol. 27, 141–150 (2002).

Lekka, M., Sainz-Serp, D., Kulik, A. J. & Wandrey, C. Hydrogel microspheres: Influence of chemical composition on surface morphology, local elastic properties, and bulk mechanical characteristics. Langmuir 20, 9968–9977 (2004).

Shellenberger, K. & Logan, B. E. Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environ. Sci. Technol. 36, 184–189 (2002).

Papajova, E., Bujdos, M., Chorvat, D., Stach, M. & Lacik, I. Method for preparation of planar alginate hydrogels by external gelling using an aerosol of gelling solution. Carbohydr. Polym. 90, 472–482 (2012).

Fujie, T. et al. Evaluation of substrata effect on cell adhesion properties using freestanding poly(L-lactic acid) nanosheets. Langmuir 27, 13173–13182 (2011).

Qi, M. et al. A recommended laparoscopic procedure for implantation of microcapsules in the peritoneal cavity of non-human primates. J. Surg. Res. 168, e117–e123 (2011).

Dang, T. T. et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 34, 5792–5801 (2013).

de Groot, M., Schuurs, T. A. & van Schilfgaarde, R. Causes of limited survival of microencapsulated pancreatic islet grafts. J. Surg. Res. 121, 141–150 (2004).

Strand, B. L., Gaserod, O., Kulseng, B., Espevik, T. & Skjak-Baek, G. Alginate-polylysine-alginate microcapsules: Effect of size reduction on capsule properties. J. Microencapsulation 19, 615–630 (2002).

Robitaille, R. et al. Studies on small (<350 microm) alginate-poly-L-lysine microcapsules. III. Biocompatibility Of smaller versus standard microcapsules. J. Biomed. Mater. Res. 44, 116–120 (1999).

Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nature Rev. Immunol. 11, 762–774 (2011).

Burnett, S. H. et al. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J. Leukocyte Biol. 75, 612–623 (2004).

Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003).

Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nature Rev. Immunol. 8, 958–969 (2008).

Murray, P. J. et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

Gordon, S. & Martinez, F. O. Alternative activation of macrophages: Mechanism and functions. Immunity 32, 593–604 (2010).

Lacy, P. E. & Kostianovsky, M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16, 35–39 (1967).

Morch, Y. A., Donati, I., Strand, B. L. & Skjak-Braek, G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7, 1471–1480 (2006).

Ricordi, C. et al. Islet isolation assessment in man and large animals. Acta Diabetol. Lat. 27, 185–195 (1990).

Adewola, A. F. et al. Microfluidic perifusion and imaging device for multi-parametric islet function assessment. Biomed. Microdevices 12, 409–417 (2010).

Keizer, J. & Magnus, G. ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study. Biophys. J. 56, 229–242 (1989).