Six-Sigma Robust Design Optimization Using a Many-Objective Decomposition-Based Evolutionary Algorithm

IEEE Transactions on Evolutionary Computation - Tập 19 Số 4 - Trang 490-507 - 2015
Md Asafuddoula1, Hemant Kumar Singh1, Tapabrata Ray1
1School Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1081/SME-200067066

10.1115/1.2202883

10.1109/TEVC.2005.846356

10.1109/TEVC.2005.859465

10.1080/03052150008941314

10.1145/1068009.1068140

gupta, 2005, Handling constraints in robust multiobjective optimization, Proc IEEE Congr Evol Comput, 450

10.1162/evco.2006.14.4.463

10.2514/1.3877

10.1061/(ASCE)0733-9496(2005)131:3(161)

10.1016/S0045-7949(00)00117-6

10.2514/3.13187

10.2514/1.J051372

10.1002/nme.383

10.1061/(ASCE)0733-9445(1994)120:11(3156)

frangopol, 1994, 13, Study on Reliability Based Structural Optimization, 492

10.1115/1.1649968

10.1016/S0045-7825(98)00143-1

10.1109/TMAG.2013.2243123

10.1007/s00158-003-0337-0

10.1007/3-540-61723-X_1018

branke, 1998, Creating robust solutions by means of evolutionary algorithms, Parallel Problem Solving from Nature-PPSN V, 1498, 119, 10.1007/BFb0056855

10.1007/BF00113893

10.1162/evco.1996.4.2.113

rattray, 1997, Noisy fitness evaluation in genetic algorithms and the dynamics of learning, Foundations in Genetic Algorithms 4, 4, 117

thompson, 1998, On the automatic design of robust electronics through artificial evolution, Proc Int Conf Evol Syst, 13

sebald, 1992, Design of fault tolerant neural networks for pattern classification, Proc 1st Annu Conf Evol Program, 90

branke, 2001, Reducing the sampling variance when searching for robust solutions, Proc Genet Evol Comput Conf (GECCO), 235

10.1109/4235.661550

10.1023/A:1008356321921

lee, 1994, A study on the robust design for unconstrained optimization problems, KSME J Mech Des, 18, 2825

10.1007/s001580050148

10.4271/1999-01-5623

10.1364/AO.35.005477

10.2514/2.2114

10.1016/j.cma.2007.03.003

10.1109/4235.738986

poles, 2009, A polynomial chaos approach to robust multiobjective optimization, Hybrid and Robust Approaches to Multiobjective Optimization, 1862

10.1109/TEVC.2005.859467

10.1007/s00158-002-0196-0

10.2514/3.13628

10.1177/002199839302700204

phadke, 1989, Quality Engineering Using Robust Design

10.1115/1.3258751

park, 1994, Structural optimization post-process using Taguchi method, JSME Int J A Mech Mater Eng, 37, 166

10.1115/1.1333095

10.1080/03052159208941278

10.1007/978-3-540-70928-2_55

zitzler, 2002, SPEA2: Improving the strength Pareto evolutionary algorithm for multi-objective optimisation, Evolutionary Methods for Design Optimisation and Control, 95

10.1109/CEC.2008.4631121

10.1109/4235.996017

10.1109/ICICIC.2007.49

10.1007/978-3-540-70928-2_5

10.1007/978-3-540-89694-4_41

kachroudi, 2010, Average rank domination relation for NSGA-II and SMPSO algorithms for many-objective optimization, Proc 2nd World Congr Nat Biol Inspired Comput (NaBIC), 19

zou, 2008, A new evolutionary algorithm for solving many-objective optimization problems, IEEE Trans Syst Man Cybern B Cybern, 38, 1402, 10.1109/TSMCB.2008.926329

10.1109/CEC.2012.6256466

kim, 2007, Reliability-based design optimization using response surface method with prediction interval estimation, ASME J Mech Des, 130, 1

loughlin, 1999, Chance-constrained genetic algorithms, Genetic and Evolutionary Computation, 369

10.2307/1268522

10.1016/0167-4730(86)90012-3

10.1061/(ASCE)0733-9399(1989)115:6(1347)

10.1115/1.2829440

10.2514/6.2001-2528

10.2307/2371268

hasofer, 1974, Exact and invariant second-moment code format, ASCE J Eng Mech Div, 100, 111, 10.1061/JMCEA3.0001848

10.1016/0167-4730(87)90002-6

10.2514/6.1998-912

10.2514/6.2000-422

fonseca, 1993, Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization, Proc of 5th International Conference on Genetic Algorithms, 93, 416

purshouse, 2003, Conflict, harmony, and independence: Relationships in evolutionary multi-criterion optimisation, Evolutionary Multi-Criterion Optimization, 16, 10.1007/3-540-36970-8_2

10.1007/BF01898350

10.2514/1.30310

10.1287/opre.28.6.1424

arora, 1989, Introduction to Optimum Design

10.1016/j.ejor.2006.08.008

10.1109/TEVC.2007.892759

10.1007/s11047-006-9025-5

10.1115/1.2826915

10.1007/s00158-010-0601-z

10.1080/03052159508941185

10.1002/nme.1620381008

deb, 2005, Searching for robust Pareto-optimal solutions in multi-objective optimization, Evolutionary Multi-Criterion Optimization, 3410, 150, 10.1007/978-3-540-31880-4_11

jin, 2003, Trade-off between performance and robustness: An evolutionary multiobjective approach, Evolutionary Multi-Criterion Optimization, 2632, 237, 10.1007/3-540-36970-8_17

10.1109/TEVC.2013.2281534

10.2514/3.25243

asafuddoula, 2013, A decomposition based evolutionary algorithm for many objective optimization with systematic sampling and adaptive epsilon control, Evolutionary Multi-Criterion Optimization, 7811, 413, 10.1007/978-3-642-37140-0_32

10.1115/1.4001526

10.1109/TEVC.2005.850256

10.1109/TEVC.2009.2014361

10.1109/CEC.2012.6252868

aguirre, 2009, Adaptive $\epsilon $ -ranking on MNK-landscapes, Proc IEEE Symp Comput Intell Multi Crit Decis Making (MCDM), 104

belegundu, 1982, A study of mathematical programming methods for structural optimization

10.1137/S1052623496307510

10.1109/TEVC.2010.2093579

deb, 2001, Multi-Objective Optimization Using Evolutionary Algorithms

10.1115/1.3438995