Site-specific study of jetting, bonding, and local deformation during high-velocity metallic microparticle impact

Acta Materialia - Tập 202 - Trang 159-169 - 2021
Ahmed A. Tiamiyu1, Yuchen Sun1,2,3, Keith A. Nelson2,3, Christopher A. Schuh4
1Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
2Institute for Soldier Nanotechnologies, MIT, Cambridge, MA 02139, USA
3Department of Chemistry, MIT, Cambridge, MA 02139 USA
4Department of Materials Science and Engineering, MIT, Cambridge, MA, 02139, USA

Tài liệu tham khảo

Kuz'micheva, 2018, Heating of ejecta from a meteorite crater by the perturbed atmosphere, Sol. Syst. Res., 52, 139, 10.1134/S0038094618020053 Davison, 2010, Numerical modelling of heating in porous planetesimal collisions, Icarus, 208, 468, 10.1016/j.icarus.2010.01.034 Birkhoff, 1948, Explosives with lined cavities, J. Appl. Phys., 563, 10.1063/1.1698173 Assadi, 2016, Cold spraying – a materials perspective, Acta Mater., 116, 382, 10.1016/j.actamat.2016.06.034 Bataev, 2019, Towards better understanding of explosive welding by combination of numerical simulation and experimental study, Mater. Des., 169, 10.1016/j.matdes.2019.107649 Ang, 1990, Impact flash jet initiation phenomenology, Int. J. Impact Eng., 10, 23, 10.1016/0734-743X(90)90046-X Walsh, 1953, Limiting conditions for jet formation in high velocity collisions, J. Appl. Phys., 24, 349, 10.1063/1.1721278 Johnson, 2014, Jetting during vertical impacts of spherical projectiles, Icarus, 238, 13, 10.1016/j.icarus.2014.05.003 Hassani-Gangaraj, 2018, Adiabatic shear instability is not necessary for adhesion in cold spray, Acta Mater., 158, 430, 10.1016/j.actamat.2018.07.065 Remington, 2018, Spall strength dependence on grain size and strain rate in tantalum, Acta Mater., 158, 313, 10.1016/j.actamat.2018.07.048 Hassani-Gangaraj, 2015, Critical review of corrosion protection by cold spray coatings, Surf. Eng., 31, 803, 10.1179/1743294415Y.0000000018 Xie, 2016, New insights into the coating/substrate interfacial bonding mechanism in cold spray, Scr. Mater., 125, 1, 10.1016/j.scriptamat.2016.07.024 Moridi, 2014, Cold spray coating: review of material systems and future perspectives, Surf. Eng., 30, 369, 10.1179/1743294414Y.0000000270 Schmidt, 2006, Development of a generalized parameter window for cold spray deposition, Acta Mater., 54, 729, 10.1016/j.actamat.2005.10.005 Li, 2010, Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings, Appl. Surf. Sci., 256, 4953, 10.1016/j.apsusc.2010.03.008 Dykhuizen, 1999, Impact of high velocity cold spray particles, J. Therm. Spray Technol., 8, 559, 10.1361/105996399770350250 Xiong, 2010, The effects of successive impacts and cold welds on the deposition onset of cold spray coatings, J. Therm. Spray Technol., 19, 575, 10.1007/s11666-009-9455-6 Cinca, 2013, Influence of the particle morphology on the cold gas spray deposition behaviour of titanium on aluminum light alloys, J. Alloys Compd, 554, 89, 10.1016/j.jallcom.2012.11.069 Vidaller, 2015, Single impact bonding of cold sprayed Ti-6Al-4V powders on different substrates, J. Therm. Spray Technol., 24, 644, 10.1007/s11666-014-0200-4 Kim, 2010, Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity, Surf. Coatings Technol., 204, 2175, 10.1016/j.surfcoat.2009.12.001 King, 2014, Interface melding in cold spray titanium particle impact, Surf. Coatings Technol., 239, 191, 10.1016/j.surfcoat.2013.11.039 Hassani-Gangaraj, 2018, In-situ observations of single micro-particle impact bonding, Scr. Mater., 145, 9, 10.1016/j.scriptamat.2017.09.042 Veysset, 2016, Dynamics of supersonic microparticle impact on elastomers revealed by real – time multi – frame imaging, Sci. Rep., 6, 1, 10.1038/srep25577 Hassani-Gangaraj, 2017, Melting can hinder impact-induced adhesion, Phys. Rev. Lett., 119, 1, 10.1103/PhysRevLett.119.175701 Hassani-Gangaraj, 2018, Melt-driven erosion in microparticle impact, Nat. Commun., 9 Sun, 2020, The transition from rebound to bonding in high-velocity metallic microparticle impacts: jetting‐associated power‐law divergence, J. Appl. Mech., 87, 10.1115/1.4047206 Sun, 2020, In-situ observations of jetting in the divergent rebound regime for high-velocity metallic microparticle impact, Appl. Phys. Lett., 117, 134105, 10.1063/5.0018681 Yin, 2013, Deposition behavior of thermally softened copper particles in cold spraying, Acta Mater., 61, 5105, 10.1016/j.actamat.2013.04.041 Wierzbicki, 1999, Petalling of plates under explosive and impact loading, Int. J. Impact Eng., 22, 935, 10.1016/S0734-743X(99)00028-7 Assadi, 2003, Bonding mechanism in cold gas spraying, Acta Mater., 51, 4379, 10.1016/S1359-6454(03)00274-X Henao, 2017, Deposition mechanisms of metallic glass particles by cold gas spraying, Acta Mater., 125, 327, 10.1016/j.actamat.2016.12.007 Xie, 2017, Dynamics and extreme plasticity of metallic microparticles in supersonic collisions /639/166/988 /639/301/1023/1026 /639/301/930/12 /128 article, Sci. Rep., 7, 1 Hassani-Gangaraj, 2019, Impact-bonding with aluminum, silver, and gold microparticles: Toward understanding the role of native oxide layer, Appl. Surf. Sci., 476, 528, 10.1016/j.apsusc.2019.01.111 Imbriglio, 2019, Adhesion strength of titanium particles to alumina substrates : a combined cold spray and LIPIT study, Surf. Coat. Technol., 361, 403, 10.1016/j.surfcoat.2019.01.071 Khalkhali, 2018, A comparison of cold spray technique to single particle micro-ballistic impacts for the deposition of polymer particles on polymer substrates, Surf. Coat. Technol., 351, 99, 10.1016/j.surfcoat.2018.07.053 Murr, 1976, The role of grain-boundary structure in shock-induced spallation of molybdenum, J. Appl. Phys., 1364, 10.1063/1.322796 Yin, 2018, Cold spray additive manufacturing and repair: fundamentals and applications, Addit. Manuf., 21, 628 M, 2019, Cold spray coating diagram : bonding properties and construction methodology, J. Therm. Spray Technol., 28, 756, 10.1007/s11666-019-00853-5 Wüstefeld, 2017, Local heteroepitaxy as an adhesion mechanism in aluminium coatings cold gas sprayed on AlN substrates, Acta Mater., 128, 418, 10.1016/j.actamat.2017.02.021 Tiamiyu, 2020, Particle flattening during cold spray: mechanistic regimes revealed by single particle impact tests, Surf. Coatings Technol., 10.1016/j.surfcoat.2020.126386 Chen, 2004, Transition from nondeformable projectile penetration to semihydrodynamic penetration, J. Eng. Mech., 130, 123, 10.1061/(ASCE)0733-9399(2004)130:1(123) G.H. Jonas, J.A. Zukas, Mechanics of penetration : analysis and experiment, 1979. Assadi, 2011, On parameter selection in cold spraying, J. Therm. Spray Technol., 20, 1161, 10.1007/s11666-011-9662-9 Schmidt, 2009, From particle acceleration to impact and bonding in cold spraying, J. Therm. Spray Technol., 18, 794, 10.1007/s11666-009-9357-7