Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tỷ lệ cường độ đỉnh theo vị trí (SPIR) từ phổ 1D 2H/1H NMR để phân biệt nhanh giữa nicotine tự nhiên và nicotine tổng hợp cũng như phát hiện khả năng pha tạp
Tóm tắt
Phổ NMR 1H và 2H của 4 mẫu nicotine tự nhiên và tổng hợp đã được thu thập theo cách không định lượng và tỷ lệ cường độ đỉnh 2H/1H theo vị trí (SPIR) đã được tính toán cho 12 vị trí khác nhau của nicotine. Kết quả thực nghiệm cho thấy rằng các SPIR tại các vị trí 6, 2′ và 5′β của nicotine tự nhiên có sự khác biệt đáng kể so với các SPIR của nicotine tổng hợp, và có thể được sử dụng để xác thực nicotine vì các SPIR đo được phản ánh sự phân tách đồng vị tự nhiên theo vị trí. Chúng tôi đã chứng minh rằng phương pháp này có thể được áp dụng để phát hiện sự pha tạp nicotine tự nhiên với nicotine tổng hợp thấp đến 20%, mà không cần đo các giá trị δD theo vị trí, điều này thường đòi hỏi phân tích 2H NMR định lượng tốn thời gian và các phương pháp IRMS bổ sung để xác định tỷ lệ đồng vị 2H/1H tổng thể. Các SPIR 2H/1H dễ phân biệt của nicotine, có thể được đo nhanh chóng bằng NMR theo cách không định lượng, có thể được xem là một công cụ thay thế hấp dẫn cho việc xác thực thuốc lá.
Từ khóa
#Nicotine #SPIR #NMR #Tách đồng vị tự nhiên #Xác thực thuốc láTài liệu tham khảo
Brenna JT, Corso TN, Tobias HJ, Caimi RJ. High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrom Rev. 1997;16(6):382. https://doi.org/10.1002/(SICI)1098-2787(1997)16:5<227::AID-MAS1>3.0.CO;2-J.
Hilkert AW, Douthitt CB, Schlüter HJ, Brand WA. Isotope ratio monitoring gas chromatography/mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 1999;13(13):1226–30. https://doi.org/10.1002/(SICI)1097-0231(19990715)13:13<1226::AID-RCM575>3.0.CO;2-9.
Meier-Augenstein W. Applied gas chromatography coupled to isotope ratio mass spectrometry. J Chromatogr A. 1999;842(1–2):351–71. https://doi.org/10.1016/S0021-9673(98)01057-7.
Muccio Z, Jackson GP. Isotope ratio mass spectrometry. Analyst. 2009;134(2):213–22. https://doi.org/10.1039/B808232D.
Tea I, Tcherkez G. Natural isotope abundance in metabolites: techniques and kinetic isotope effect measurement in plant, animal, and human tissues. Methods Enzymol. 2017;596:113–47. https://doi.org/10.1016/bs.mie.2017.07.020.
Martin GJ, Martin ML. Deuterium labelling at the natural abundance level as studied by high field quantitative 2H NMR. Tetrahedron Lett. 1981;22(36):3525–8. https://doi.org/10.1016/S0040-4039(01)81948-1.
Remaud GS, Martin YL, Martin GG, Martin GJ. Detection of sophisticated adulterations of natural vanilla flavors and extracts: application of the SNIF-NMR method to vanillin and p-hydroxybenzaldehyde. J Agric Food Chem. 1997;45(3):859–66. https://doi.org/10.1021/jf960518f.
Toulemonde B, Horman I, Egli H, Derbesy M. Food-related applications of high-resolution NMR. Part II. Differentiation between natural and synthetic vanillin samples using 2H-NMR. Helv Chim Acta. 1983;66(7):2342–5. https://doi.org/10.1002/hlca.19830660745.
Martin GJ. Multisite and multicomponent approach for the stable isotope analysis of aromas and essential oils. Acs Symp Ser. 1995;596:79–93. https://doi.org/10.1021/bk-1995-0596.ch008.
Remaud GS, Debon AA, Martin Y, Martin GG, Martin GJ. Authentication of bitter almond oil and cinnamon oil: application of the SNIF-NMR method to benzaldehyde. J Agric Food Chem. 1997;45(10):4042–8. https://doi.org/10.1021/jf970143d.
Martin GJ, Koziet J, Rossmann A, Dennis J. Site-specific natural isotópe fractionation in fruit juices determined by deuterium NMR an European inter-laboratory comparison study. Anal Chim Acta. 1996;321(2):137–46. https://doi.org/10.1016/0003-2670(95)00568-4.
Martin GJ, Martin ML. The site-specific natural isotope fractionation-NMR method applied to the study of wines. In: Linskens H-F, Jackson JF, editors. Wine analysis. Modern Methods of Plant Analysis, vol. 6. Berlin: Springer; 1988. p. 258–75. https://doi.org/10.1007/978-3-642-83340-3_9.
Martin GJ, Akoka S, Martin ML. SNIF-NMR—part 1: principles. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2006. p. 1651–8. https://doi.org/10.1007/978-3-319-28388-3.
Shoji T, Hashimoto T. Biosynthesis and regulation of tobacco alkaloids. In: Wallner F, editor. Herbaceous plants: cultivation methods, grazing and enviromental impacts. New York: Nova Biomedical; 2013. p. 37–67.
Jamin E, Naulet N, Martin G. Multi-element and multi-site isotopic analysis of nicotine from tobacco leaves. Plant Cell Environ. 1997;20:589–99. https://doi.org/10.1111/j.1365-3040.1997.00099.x.
Chambers RP, Call GB, Meyer D, Smith J, Techau JA, Pearman K, et al. Nicotine increases lifespan and rescues olfactory and motor deficits in a Drosophila model of Parkinson’s disease. Behav Brain Res. 2013;253:95–102. https://doi.org/10.1016/j.bbr.2013.07.020.
Quik M, Huang LZ, Parameswaran N, Bordia T, Campos C, Perez XA. Multiple roles for nicotine in Parkinson’s disease. Biochem Pharmacol. 2009;78(7):677–85. https://doi.org/10.1016/j.bcp.2009.05.003.
Sanberg PR, Silver AA, Shytle RD, Philipp MK, Cahill DW, Fogelson HM, et al. Nicotine for the treatment of Tourette’s syndrome. Pharmacol Ther. 1997;74(1):21–5. https://doi.org/10.1016/S0163-7258(96)00199-4.
Holladay MW, Lebold SA, Lin NH. Structure-activity relationships of nicotinic acetylcholine receptor agonists as potential treatments for dementia. Drug Dev Res. 1995;35:191–213. https://doi.org/10.1002/ddr.430350402.
Djordjevic MV, Doran KA. Nicotine content and delivery across tobacco products. In: Henningfield JE, London ED, Pogun S, editors. Nicotine psychopharmacology. Handbook of Experimental Pharmacology, vol. 192. Berlin: Springer; 2009. p. 61–82. https://doi.org/10.1007/978-3-540-69248-5_3.
Girard S, Robins RJ, Villiéras J, Lebreton J. A short and efficient synthesis of unnatural (R)-nicotine. Tetrahedron Lett. 2000;41(48):9245–9. https://doi.org/10.1016/S0040-4039(00)01675-0.
Welter C, Moreno RM, Streiff S, Helmchen G. Enantioselective synthesis of (+)(R)- and (−)(S)-nicotine based on Ir-catalysed allylic amination. Org Biomol Chem. 2005;3(18):3266–8. https://doi.org/10.1039/B508634E.
Willcott MR. MestRe Nova. J Am Chem Soc. 2009;131(36):13180. https://doi.org/10.1021/ja906709t.
Hu K, Westler WM, Markley JL. Simultaneous quantification and identification of individual chemicals in metabolite mixtures by two-dimensional extrapolated time-zero 1H−13C HSQC (HSQC0). J Am Chem Soc. 2011;133(6):1662–5. https://doi.org/10.1021/ja1095304.
Li X, Hu K. Quantitative NMR studies of multiple compound mixtures. Annu Rep Nmr Spectrosc. 2017;90:85–143. https://doi.org/10.1016/bs.arnmr.2016.08.001.
Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom. 2006;20(8–10):341–51. https://doi.org/10.1002/cem.1006.
Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metaboliteprofiling using nonlinear peakalignment, matching, and identification. Anal Chem. 2006;78(3):779–87. https://doi.org/10.1021/ac051437y.
Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O. A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites. 2012;2(4):775–95. https://doi.org/10.3390/metabo2040775.
Plaxton WC. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol. 1996;47(1):185–214. https://doi.org/10.1146/annurev.arplant.47.1.185.
Zhang BL, Quemerais B, Martin ML, Martin GJ, Williams JM. Determination of the natural deuterium distribution in glucose from plants having different photosynthetic pathways. Phytochem Anal. 1994;5:105–10. https://doi.org/10.1002/pca.2800050304.
Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T, et al. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol. 1998;38(6):1101–11. https://doi.org/10.1023/A:1006058700949.
Sandmeier E, Hale T, Christen P. Multiple evolutionary origin of pyridoxal-5′-phosphate-dependent amino acid decarboxylases. Eur J Biochem. 1994;221:997–1002. https://doi.org/10.1111/j.1432-1033.1994.tb18816.x.
Whidby JF, Seeman J. The configuration of nicotine. A nuclear magnetic resonance study. J Org Chem. 1976;41:1585–90. https://doi.org/10.1021/jo00871a022.
Huang K, Ortiz-Marciales M, De Jesús M, Stepanenko V. A new and efficient approach to the synthesis of nicotine and anabasine analogues. J Heterocyclic Chem. 2009;46(6):1252–8. https://doi.org/10.1002/jhet.233.
Limbach HH. Dynamic nmr spectroscopy in the presence of kinetic hydrogen/deuterium isotope effects. In: Deuterium and shift calculation. NMR Basic Principles and Progress, vol 23. Deuterium and Shift Calculation. Berlin: Springer; 1990. p. 63–164. https://doi.org/10.1007/978-3-642-75932-1_2.
Kendall C, Caldwell EA. Fundamentals of isotope geochemistry. In: Kendall C, McDonnell JJ, editors. Isotope tracers in catchment hydrology. Amsterdam: Elsevier; 1998. p. 51–86. https://doi.org/10.1016/B978-0-444-81546-0.50009-4.
Maggi F, Riley WJ. Mathematical treatment of isotopologue and isotopomer speciation and fractionation in biochemical kinetics. Geochim Cosmochim Acta. 2010;74(6):1823–35. https://doi.org/10.1016/j.gca.2009.12.021.
Urey HC. The thermodynamic properties of isotopic substances. J Chem Soc. 1947:562–81. https://doi.org/10.1039/jr9470000562.
Chacko T, Horita DRC. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev Mineral Geochem. 2001;43:1–81. https://doi.org/10.2138/rmg.2016.81.00.
Galindo-Prieto B, Eriksson L, Trygg J. Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). J Chemom. 2014;28(8):623–32. https://doi.org/10.1002/cem.2627.