Sirt1: Role Under the Condition of Ischemia/Hypoxia

Springer Science and Business Media LLC - Tập 37 - Trang 17-28 - 2016
Xiaofei Meng1, Jin Tan1, Mengmeng Li1, Shuling Song1, Yuyang Miao2, Qiang Zhang1
1Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
2Tianjin Medical University, Tianjin, China

Tóm tắt

Silent information regulator factor 2-related enzyme 1 (sirtuin 1, Sirt1) is a nicotinamide adenine dinucleotide-dependent deacetylase, which can deacetylate histone and non-histone proteins and other transcription factors, and is involved in the regulation of many physiological functions, including cell senescence, gene transcription, energy balance, and oxidative stress. Ischemia/hypoxia injury remains an unresolved and complicated situation in the diseases of ischemia stroke, heart failure, and coronary heart disease, especially among the old folks. Studies have demonstrated that aging could enhance the vulnerability of brain, heart, lung, liver, and kidney to ischemia/hypoxia injury and the susceptibility in old folks to ischemia/hypoxia injury might be associated with Sirt1. In this review, we mainly summarize the role of Sirt1 in modulating pathways against energy depletion and its involvement in oxidative stress, apoptosis, and inflammation under the condition of ischemia/hypoxia.

Tài liệu tham khảo

Akkafa F, Halil Altiparmak I, Erkus ME, Aksoy N, Kaya C, Ozer A, Sezen H, Oztuzcu S, Koyuncu I, Umurhan B (2015) Reduced SIRT1 expression correlates with enhanced oxidative stress in compensated and decompensated heart failure. Redox Biol. 6:169–173. doi:10.1016/j.redox.2015.07.011 Anchoori RK, Harikumar KB, Batchu VR, Aggarwal BB, Khan SR (2010) Inhibition of IkB kinase and NF-kappaB by a novel synthetic compound SK 2009. Bioorg Med Chem 18:229–235. doi:10.1016/j.bmc.2009.10.065 Andrews ZB, Horvath B, Barnstable CJ, Elsworth J, Yang L, Beal MF, Roth RH, Matthews RT, Horvath TL (2005) Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson’s disease. J Neurosci 25:184–191 Ayub A, Poulose N, Raju R (2015) Resveratrol improves survival and prolongs life following hemorrhagic shock. Mol Med 21:305–312. doi:10.2119/molmed.2015.00013 Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128:546–552 Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C (2012) SIRT1 modulates MAPK pathways in ischemic–reperfused cardiomyocytes. Cell Mol Life Sci 69:2245–2260. doi:10.1007/s00018-012-0925-5 Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435 Blokh D, Stambler I (2015) Information theoretical analysis of aging as a risk factor for heart disease. Aging Dis 6:196–207. doi:10.14336/AD.2014.0623 Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280:17187–17195 Boutant M, Cantó C (2013) SIRT1 metabolic actions: integrating recent advances from mouse models. Mol Metab 3:5–18. doi:10.1016/j.molmet.2013.10.006 Breitenstein A, Wyss CA, Spescha RD, Franzeck FC, Hof D, Riwanto M, Hasun M, Akhmedov A, von Eckardstein A, Maier W, Landmesser U, Lüscher TF, Camici GG (2013) Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease. PLoS ONE 8:e53106. doi:10.1371/journal.pone.0053106 Cattelan A, Ceolotto G, Bova S, Albiero M, Kuppusamy M, De Martin S, Semplicini A, Fadini GP, de Kreutzenberg SV, Avogaro A (2015) NAD(+)-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis. Vascul Pharmacol 70:35–44. doi:10.1016/j.vph.2015.02.004 Chen CJ, Yu W, Fu YC, Wang X, Li JL, Wang W (2009) Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem Biophys Res Commun 378:389–393. doi:10.1016/j.bbrc.2008.11.110 Chen YX, Zhang M, Cai Y, Zhao Q, Dai W (2015) The Sirt1 activator SRT1720 attenuates angiotensin II-induced atherosclerosis in apoE−/− mice through inhibiting vascular inflammatory response. Biochem Biophys Res Commun 465:732–738. doi:10.1016/j.bbrc.2015.08.066 Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392 Conti V, Forte M, Corbi G, Russomanno G, Formisano L, Landolfi A, Izzo V, Filippell A, Vecchione C, Carrizzo A (2015) Sirtuins: a possible clinical implication in cardio- and cerebro- vascular systems. Curr Drug Targets (Epub ahead of print) Deierborg T, Wieloch T, Diano S, Warden CH, Horvath TL, Mattiasson G (2008) Overexpression of UCP2 protects thalamic neurons following global ischemia in the mouse. J Cereb Blood Flow Metab 28:1186–1195. doi:10.1038/jcbfm.2008.8 Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002. doi:10.1016/j.neuroscience.2009.01.017 Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL (2003) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144:5014–5021. doi:10.1038/jcbfm.2008.8 Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA (2009) Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science 324:1289–1293. doi:10.1126/science.1169956 Daitoku K, Fukui K, Ichinoseki I, Munakata M, Takahashi S, Fukuda I (2004) Radiotherapy-induced aortic valve disease associated with porcelain aorta. Jpn J Thorac Cardiovasc Surg 52:349–352 El Ramy R, Magroun N, Messadecq N, Gauthier LR, Boussin FD, Kolthur-Seetharam U, Schreiber V, McBurney MW, Sassone-Corsi P, Dantzer F (2009) Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cell Mol Life Sci 66:3219–3234. doi:10.1007/s00018-009-0105-4 Esteves TC, Brand MD (2005) The reactions catalysed by the mitochondrial uncoupling proteins UCP2 and UCP3. Biochim Biophys Acta 1709:35–44 Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355–369. doi:10.1016/S1474-4422(09)70025-0 Frye RA (1999) Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260:273–279 Fu B, Zhang J, Zhang X, Zhang C, Li Y, Zhang Y, He T, Li P, Zhu X, Zhao Y, Zhang Y, Wang X (2014) Alpha-lipoic acid upregulates SIRT1-dependent PGC-1α expression and protects mouse brain against focal ischemia. Neuroscience 281C:251–257. doi:10.1016/j.neuroscience.2014.09.058 Gano LB, Donato AJ, Pasha HM, Hearon CM Jr, Sindler AL, Seals DR (2014) The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. Am J Physiol Heart Circ Physiol 307:H1754–H1763. doi:10.1152/ajpheart.00377.2014 Ghosh S, Liu B, Zhou Z (2013) Resveratrol activates SIRT1 in a Lamin A-dependent manner. Cell Cycle 12:872–876. doi:10.4161/cc.24061 Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP et al (2013) Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638. doi:10.1016/j.cell.2013.11.037 Gong H, Pang J, Han Y, Dai Y, Dai D, Cai J, Zhang TM (2014) Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Mol Med Rep 10:3296–3302. doi:10.3892/mmr.2014.2648 Gu XS, Wang ZB, Ye Z, Lei JP, Li L, Su DF, Zheng X (2014) Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. Genet Mol Res 13:323–335. doi:10.4238/2014 Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14:1021–1026 Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107:1470–1482. doi:10.1161/CIRCRESAHA.110.227371 Hattori Y, Okamoto Y, Nagatsuka K, Takahashi R, Kalaria RN, Kinoshita M, Ihara M (2015) SIRT1 attenuates severe ischemic damage by preserving cerebral blood flow. NeuroReport 26:113–117. doi:10.1097/WNR.0000000000000308 Hernández-Jiménez M, Hurtado O, Cuartero MI, Ballesteros I, Moraga A, Pradillo JM, McBurney MW, Lizasoain I, Moro MA (2013) Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44:2333–2337. doi:10.1161/STROKEAHA.113.001715 Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196 Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122:2170–2182. doi:10.1161/CIRCULATIONAHA.110.958033 Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31:212–220. doi:10.1016/j.tips.2010.02.003 Jing H, Yao J, Liu X, Fan H, Zhang F, Li Z, Tian X, Zhou Y (2014) Fish-oil emulsion (omega-3 polyunsaturated fatty acids) attenuates acute lung injury induced by intestinal ischemia-reperfusion through Adenosine 5’-monophosphate-activated protein kinase-sirtuin1 pathway. J Surg Res 187:252–261. doi:10.1016/j.jss.2013.10.009 Joo HY, Yun M, Jeong J, Park ER, Shin HJ, Woo SR, Jung JK, Kim YM, Park JJ, Kim J, Lee KH (2015) SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1a (HIF-1a) via direct interactions during hypoxia. Biochem Biophys Res Commun 462:294–300. doi:10.1016/j.bbrc.2015.04.119 Kang WK, Kim YH, Kim BS, Kim JY (2014) Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast. J Microbiol 52:652–658. doi:10.1007/s12275-014-4173-2 Kim HJ, Joe Y, Yu JK, Chen Y, Jeong SO, Mani N, Cho GJ, Pae HO, Ryter SW, Chung HT (2015) Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochim Biophys Acta 1852:1550–1559. doi:10.1016/j.bbadis.2015.04.017 Kumari S, Chaurasia SN, Nayak MK, Mallick RL, Dash D (2015) Sirtuin inhibition induces apoptosis-like changes in platelets and thrombocytopenia. J Biol Chem 290:12290–12299. doi:10.1074/jbc.M114.615948 Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A, Koya D (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055. doi:10.1172/JCI41376 Lee D, Goldberg AL (2013) SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J Biol Chem 288:30515–30526. doi:10.1074/jbc.M113.489716 Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell 38:864–878. doi:10.1016/j.molcel.2010.05.023 Lim JH, Kim EN, Kim MY, Chung S, Shin SJ, Kim HW, Yang CW, Kim YS, Chang YS, Park CW, Choi BS (2012) Age-associated molecular changes in the kidney in aged mice. Oxid Med Cell Longev 2012:171383. doi:10.1155/2012/171383 Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18:12–16 Liu L, Wang P, Liu X, He D, Liang C, Yu Y (2014) Exogenous NAD(+) supplementation protects H9c2 cardiac myoblasts against hypoxia/reoxygenation injury via Sirt1-p53 pathway. Fundam Clin Pharmacol 28:180–189. doi:10.1111/fcp.12016 Lu TM, Tsai JY, Chen YC, Huang CY, Hsu HL, Weng CF, Shih CC, Hsu CP (2014) Downregulation of Sirt1 as aging change in advanced heart failure. J Biomed Sci 21:57. doi:10.1186/1423-0127-21-57 Mangerich A, Bürkle A (2012) Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid Med Cell Longev 2012:321653. doi:10.1155/2012/321653 Meng Z, Li J, Zhao H, Liu H, Zhang G, Wang L, Hu HE, Li DI, Liu M, Bi F (2015) Resveratrol relieves ischemia-induced oxidative stress in the hippocampus by activating SIRT1. Exp Ther Med 10:525–530 Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13 Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299 Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Méneur C, Permutt MA, Imai S (2005) Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2:105–117 Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ et al (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 1131:e29–e322. doi:10.1161/CIR.0000000000000152 Mu W, Zhang Q, Tang X, Fu W, Zheng W, Lu Y, Li H, Wei Y, Li L, She Z, Chen H, Liu D (2014) Overexpression of a dominant-negative mutant of SIRT1 in mouse heart causes cardiomyocyte apoptosis and early-onset heart failure. Sci China Life Sci 57:915–924. doi:10.1007/s11427-014-4687-1 Nadtochiy SM, Redman E, Rahman I, Brookes PS (2011) Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Cardiovasc Res 89:643–649. doi:10.1093/cvr/cvq287 Odden MC, Coxson PG, Moran A, Lightwood JM, Goldman L, Bibbins-Domingo K (2013) The impact of the aging population on coronary heart disease in the United States. Am J Med 124:827–833. doi:10.1016/j.amjmed.2011.04.010 Pantazi E, Zaouali MA, Bejaoui M, Serafin A, Folch-Puy E, Petegnief V, De Vera N, Ben Abdennebi H, Rimola A, Roselló-Catafau J (2014) Silent information regulator 1 protects the liver against ischemia–reperfusion injury: implications in steatotic liver ischemic preconditioning. Transpl Int 27:493–503. doi:10.1111/tri.12276 Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17:1975–1985 Petegnief V, Planas AM (2013) SIRT1 regulation modulates stroke outcome. Transl Stroke Res 4:663–671. doi:10.1007/s12975-013-0277-y Poulose N, Raju R (2015) Sirtuin regulation in aging and injury. Biochim Biophys Acta 1852:2442–2455. doi:10.1016/j.bbadis.2015.08.017 Prakash S, O’Hare AM (2009) Interaction of aging and chronic kidney disease. Semin Nephrol 29:497–503 Quintas A, de Solís AJ, Díez-Guerra FJ, Carrascosa JM, Bogónez E (2012) Age-associated decrease of SIRT1 expression in rat hippocampus: prevention by late onset caloric restriction. Exp Gerontol 47:198–201. doi:10.1016/j.exger.2011.11.010 Ran M, Li Z, Yang L, Tong L, Zhang L, Dong H (2015) Calorie restriction attenuates cerebral ischemic injury via increasing SIRT1 synthesis in the rat. Brain Res 1610:61–68. doi:10.1016/j.brainres.2015.03.043 Raval AP, Dave KR, Pérez-Pinzón MA (2005) Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 26:1141–1147 Rehan L, Laszki-Szcząchor K, Sobieszczańska M, Polak-Jonkisz D (2014) SIRT1 and NAD as regulators of ageing. Life Sci 105:1–6. doi:10.1016/j.lfs.2014.03.015 Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003 Shalwala M, Zhu SG, Das A, Salloum FN, Xi L, Kukreja RC (2014) Sirtuin 1 (SIRT1) activation mediates sildenafil induced delayed cardioprotection against ischemia-reperfusion injury in mice. PLoS ONE 9:e86977. doi:10.1371/journal.pone.0086977 Simão F, Matté A, Matté C, Soares FM, Wyse AT, Netto CA, Salbego CG (2011) Resveratrol prevents oxidative stress and inhibition of Na(+)K(+)-ATPase activity induced by transient global cerebral ischemia in rats. J Nutr Biochem 22:921–928. doi:10.1016/j.jnutbio.2010.07.013 Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042 St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408 Takada Y, Singh S, Aggarwal BB (2004) Identification of a p65 peptide that selectively inhibits NF-kappa B activation induced by various inflammatory stimuli and its role in down-regulation of NF-kappaB-mediated gene expression and up-regulation of apoptosis. J Biol Chem 279:15096–15104 Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282:6823–6832 Thompson HJ, McCormick WC, Kagan SH (2006) Traumatic brain injury in older adults: epidemiology, outcomes, and future implications. J Am Geriatr Soc 54:1590–1595 Thompson JW, Dave KR, Saul I, Narayanan SV, Perez-Pinzon MA (2013) Epsilon PKC increases brain mitochondrial SIRT1 protein levels via heat shock protein 90 following ischemic preconditioning in rats. PLoS ONE 8:e75753. doi:10.1371/journal.pone.0075753 Thompson AM, Wagner R, Rzucidlo EM (2014) Age-related loss of SirT1 expression results in dysregulated human vascular smooth muscle cell function. Am J Physiol Heart Circ Physiol 307:H533–H541 Tong C, Morrison A, Mattison S et al (2012) Impaired SIRT1 nucleocytoplasmic shuttling in the senescent heart during ischemic stress. FASEB J 27:4332–4342. doi:10.1096/fj.12-216473 Tsai KL, Cheng YY, Leu HB, Lee YY, Chen TJ, Liu DH, Kao CL (2015) Investigating the role of Sirt1-modulated oxidative stress in relation to benign paroxysmal positional vertigo and Parkinson’s disease. Neurobiol Aging 36:2607–2616. doi:10.1016/j.neurobiolaging.2015.05.012 Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300 Wang Y (2014) Molecular links between caloric restriction and Sir2/SIRT1 activation. Diabetes Metab J 38:321–329. doi:10.4093/dmj.2014.38.5.321 Wang T, Gu J, Wu PF, Wang F, Xiong Z, Yang YJ, Wu WN, Dong LD, Chen JG (2009) Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation. Free Radic Biol Med 47:229–240. doi:10.1016/j.freeradbiomed.2009.02.027 Wang F, Chen HZ, Lv X, Liu DP (2013) SIRT1 as a novel potential treatment target for vascular aging and age-related vascular disease. Curr Mol Med 13:155–164 Wątroba M, Maślińska D, Maśliński S (2012) Current overview of functions of FoxO proteins, with special regards to cellular homeostasis, cell response to stress, as well as inflammation and aging. Adv Med Sci 57:183–195. doi:10.2478/v10039-012-0039-1 Xu WH, Yao XY, Yu HJ, Huang JW, Cui LY (2012) Downregulation of miR-199a may play a role in 3-nitropropionic acid induced ischemic tolerance in rat brain. Brain Res 1429:116–123. doi:10.1016/j.brainres.2011.10.007 Xu C, Bai B, Fan P, Cai Y, Huang B, Law IK, Liu L, Xu A, Tung C, Li X, Siu FM, Che CM, Vanhoutte PM, Wang Y (2013) Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with aging in mice. Am J Transl Res 5:412–426 Yoon H, Shin SH, Shin DH, Chun YS, Park JW (2014) Differential roles of Sirt1 in HIF-1α and HIF-2α mediated hypoxic responses. Biochem Biophys Res Commun 444:36–43. doi:10.1016/j.bbrc.2014.01.001 Zhang F, Li ZL, Xu XM, Hu Y, Yao JH, Xu W, Jing HR, Wang S, Ning SL, Tian XF (2015) Protective effects of icariin-mediated SIRT1/FOXO3 signaling pathway on intestinal ischemia/reperfusion-induced acute lung injury. Mol Med Rep 11:267–276. doi:10.3892/mmr.2014.2679 Zhu HR, Wang ZY, Zhu XL, Wu XX, Li EG, Xu Y (2010) Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1alpha expression in experimental stroke. Neuropharmacology 59:70–76. doi:10.1016/j.neuropharm.2010.03.017