Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement

Ceramics International - Tập 41 - Trang 5926-5936 - 2015
Andy Nieto1, Lin Huang2, Young-Hwan Han3, Julie M. Schoenung1
1Department of Chemical Engineering and Materials Science, University of California - Davis, Davis, CA 95616, USA
2Department of Chemical Engineering and Materials Science, University of California Davis, Davis, CA, 95616, USA
3School of Materials Science and Engineering, Yeungnam University, Gyeongbuk 712-749, Republic of Korea

Tài liệu tham khảo

Wei, 2012, Extraordinary physical properties of functionalized graphene, Small, 8, 2131, 10.1002/smll.201200104 Rao, 2010, Some novel attributes of graphene, J. Phys. Chem. Lett., 1, 572, 10.1021/jz9004174 Soldano, 2010, Production, properties, and potential of graphene, Carbon, 48, 2127, 10.1016/j.carbon.2010.01.058 Choi, 2010, Synthesis of graphene and it applications: a review, Crit. Rev. Solid State Mater. Sci., 35, 52, 10.1080/10408430903505036 Balandiin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 3, 902, 10.1021/nl0731872 Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene sheets, Science, 321, 385, 10.1126/science.1157996 Frank, 2007, Mechanical properties of suspended graphene sheets, J. Vac. Sci. Technol., 6, 2558, 10.1116/1.2789446 Lu, 2009, Elastic bending modulus of monolayer graphene, J. Phys. D: Appl. Phys., 42, 102002, 10.1088/0022-3727/42/10/102002 Nieto, 2012, Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering, Carbon, 50, 4068, 10.1016/j.carbon.2012.04.054 He, 2009, Preparation and consolidation of alumina/graphene composite powders, Mater. Trans., 50, 749, 10.2320/matertrans.MRA2008458 Fan, 2010, Preparation and electrical properties of graphene nanosheet/Al2O3 composites, Carbon, 48, 1743, 10.1016/j.carbon.2010.01.017 Wang, 2011, Preparation of graphene nanosheet/alumina composites by spark plasma sintering, Mater. Res. Bull., 46, 315, 10.1016/j.materresbull.2010.11.005 Liu, 2012, Toughening of zirconia/alumina composites by the addition of graphene platelets, J. Eur. Ceram. Soc., 32, 185, 10.1016/j.jeurceramsoc.2012.07.007 Liu, 2013, Mechanical properties of graphene platelet-reinforced alumina ceramic composites, Ceram. Int., 39, 6215, 10.1016/j.ceramint.2013.01.041 Porwal, 2013, Graphene reinforced alumina nano-composites, Carbon, 64, 359, 10.1016/j.carbon.2013.07.086 Chen, 2014, Microstructure and fracture toughness of graphene nanosheets/alumina composites, Ceram. Int., 40, 13883, 10.1016/j.ceramint.2014.05.107 Fan, 2014, The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites, J. Eur. Ceram. Soc., 34, 443, 10.1016/j.jeurceramsoc.2013.08.035 Liu, 2014, Spark plasma sintering of alumina composites with graphene platelets and silicon carbide nanoparticles, Adv. Eng. Mater., 16, 1111, 10.1002/adem.201300536 Inam, 2014, Structural stability studies of graphene in sintered ceramic nanocomposites, Ceram. Int., 40, 16227, 10.1016/j.ceramint.2014.07.058 Walker, 2011, Toughening in graphene ceramic composites, ACS Nano, 5, 3182, 10.1021/nn200319d Tapaszto, 2011, Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites, Chem. Phys. Lett., 511, 340, 10.1016/j.cplett.2011.06.047 Ramirez, 2012, Graphene nanoplatelets/silicon nitride composites with high electrical conductivity, Carbon, 50, 3607, 10.1016/j.carbon.2012.03.031 Dusza, 2012, Microstructure and fracture toughness of Si3Ni4+graphene platelet composites, J. Eur. Ceram. Soc., 32, 3389, 10.1016/j.jeurceramsoc.2012.04.022 Kun, 2012, Determination of structural and mechanical properties of multilayer graphene added Silicon nitride-based composites, Ceram. Int., 38, 211, 10.1016/j.ceramint.2011.06.051 Kvetkova, 2012, Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites, Scr. Mater., 66, 793, 10.1016/j.scriptamat.2012.02.009 Seiner, 2013, Anisotropic elastic moduli and internal friction of graphene nanoplatelets/silicon nitride composites, Compos. Sci. Technol., 75, 93, 10.1016/j.compscitech.2012.12.003 Ramirez, 2013, Characterization of graphene nanoplatelets-Si3N4 composites by Raman spectroscopy, J. Eur. Ceram. Soc., 33, 471, 10.1016/j.jeurceramsoc.2012.09.014 Kvetkova, 2013, Influence of processing on fracture toughness of Si3N4+graphene platelet composites, J. Eur. Ceram. Soc., 33, 2299, 10.1016/j.jeurceramsoc.2013.01.025 Belmonte, 2013, The beneficial effect of graphene nanofillers on the tribological performance of ceramics, Carbon, 61, 431, 10.1016/j.carbon.2013.04.102 Hvizdos, 2013, Tribological properties of Si3N4-graphene nanocomposites, J. Eur. Ceram. Soc., 33, 2359, 10.1016/j.jeurceramsoc.2013.03.035 Michalkova, 2014, Effect of homogenization treatment on the fracture behavior of silicon nitride/graphene nanoplatelets composites, J. Eur. Ceram. Soc., 34, 3291, 10.1016/j.jeurceramsoc.2014.03.023 Zhang, 2013, A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility, Carbon, 61, 105, 10.1016/j.carbon.2013.04.074 Liu, 2014, Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: inherited nanostructures and enhanced properties, Carbon, 67, 250, 10.1016/j.carbon.2013.09.088 Zhang, 2010, Graphene/TiO2 nanocomposites: synthesis, characterization and applications in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem., 20, 2801, 10.1039/b917240h Zhang, 2013, Photocatalytic activity of spark plasma sintered TiO2-graphene nanoplatelet composite, Scr. Mater., 68, 719, 10.1016/j.scriptamat.2013.01.012 Porwal, 2014, In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite, J. Eur. Ceram. Soc., 34, 3357, 10.1016/j.jeurceramsoc.2014.04.031 Porwal, 2014, Tribological properties of silica-graphene nano platelet composites, Ceram. Int., 40, 12067, 10.1016/j.ceramint.2014.04.046 Miranzo, 2013, In situ processing of electrically conducting graphene/SiC nanocomposites, J. Eur. Ceram. Soc., 33, 1665, 10.1016/j.jeurceramsoc.2013.01.021 Nieto, 2013, Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering, Mater. Sci. Eng. A, 582, 338, 10.1016/j.msea.2013.06.006 Nieto, 2013, Nanodynamic mechanical behavior of graphene nanoplatelets reinforced tantalum carbide, Scr. Mater., 69, 678, 10.1016/j.scriptamat.2013.07.030 Nieto, 2014, Oxidation behavior of graphene nanoplatelets reinforced tantalum carbide composites in high temperature plasma flow, Carbon, 67, 398, 10.1016/j.carbon.2013.10.010 Yadhukulakrishnan, 2013, Spark plasma sintering of graphene reinforced zirconium diboride, Ceram. Int., 39, 6637, 10.1016/j.ceramint.2013.01.101 Shen, 2002, Spark plasma sintering of alumina, J. Am. Ceram. Soc., 85, 1921, 10.1111/j.1151-2916.2002.tb00381.x Huang, 2010, Scratch-induced deformation in fine- and ultrafine-grained bulk alumina, Scr. Mater., 63, 528, 10.1016/j.scriptamat.2010.05.023 Yao, 2011, Grain size dependence of fracture toughness for fine grained alumina, Scr. Mater., 65, 143, 10.1016/j.scriptamat.2011.03.032 Santanach, 2011, Spark plasma sintering of alumina: study of parameters, formal sintering analysis and hypothesis on the mechanism(s) involved in densification and grain growth, Acta Mater., 59, 1400, 10.1016/j.actamat.2010.11.002 Kim, 2012, High-pressure spark plasma sintering of MgO-doped transparent alumina, J. Ceram. Soc. Jpn., 120, 116, 10.2109/jcersj2.120.116 Huang, 2012, Improved mechanical behavior and plastic deformation capability of ultrafine grain alumina ceramics, J. Am. Ceram. Soc., 95, 379, 10.1111/j.1551-2916.2011.04951.x Alvarez-Clemares, 2013, Microstructure and mechanical effects of spark plasma sintering in alumina monolithic ceramics, Scr. Mater., 68, 603, 10.1016/j.scriptamat.2012.12.016 Kim, 2014, Dynamic grain growth during low-temperature spark plasma sintering of alumina, Scr. Mater., 80, 29, 10.1016/j.scriptamat.2014.02.015 Guyot, 2014, Hot pressing and spark plasma sintering of alumina: discussion about an analytical modelling used for sinter mechanism determination, Scr. Mater., 84–85, 35, 10.1016/j.scriptamat.2014.04.013 Munir, 2006, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci., 41, 763, 10.1007/s10853-006-6555-2 Ragulya, 2008, Consolidation of ceramic nanopowders, Adv. Appl. Ceram., 107, 118, 10.1179/174367608X318844 Lahiri, 2012, Graphene nanoplatelet-induced strengthening of ultra high molecular weight polyethylene and biocompatibility in vitro, ACS Appl. Mater. Interfaces, 4, 2234, 10.1021/am300244s