Sinter strength evaluation using process parameters under different conditions in iron ore sintering process

Applied Thermal Engineering - Tập 105 - Trang 894-904 - 2016
Zhilong Cheng1, Jian Yang1, Lang Zhou1, Yan Liu1, Qiuwang Wang1
1Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, 2015, Thermodynamic optimization opportunities for the recovery and utilization of residual energy and heat in China’s iron and steel industry: a case study, Appl. Therm. Eng., 86, 151, 10.1016/j.applthermaleng.2015.04.026

Lu, 2016, An energy intensity optimization model for production system in iron and steel industry, Appl. Therm. Eng., 100, 285, 10.1016/j.applthermaleng.2016.01.064

Lu, 2015, Important iron ore characteristics and their impacts on sinter quality – a review, Miner. Metall. Process, 32, 88

Yang, 2006, Combustion characteristics in an iron ore sintering bed—evaluation of fuel substitution, Combust. Flame, 145, 447, 10.1016/j.combustflame.2006.01.005

Zhou, 2012, Numerical modeling of the iron ore sintering process, ISIJ Int., 52, 1550, 10.2355/isijinternational.52.1550

Zhou, 2012, Model predictions of important bed and gas properties during iron ore sintering, ISIJ Int., 52, 2168, 10.2355/isijinternational.52.2168

Zhao, 2015, Modelling fuel combustion in iron ore sintering, Combust. Flame, 162, 1019, 10.1016/j.combustflame.2014.09.026

Zhou, 2015, Heat transfer of spent ion exchange resin in iron ore sintering process, Appl. Therm. Eng., 88, 258, 10.1016/j.applthermaleng.2014.08.067

Nath, 2005, Mathematical modeling and optimization of two-layer sintering process for sinter quality and fuel efficiency using genetic algorithm, Mater. Manuf. Process, 20, 335, 10.1081/AMP-200053418

Pahlevaninezhad, 2014, The effects of kinetic parameters on combustion characteristics in a sintering bed, Energy, 73, 160, 10.1016/j.energy.2014.06.003

Mitterlehner, 2004, Modeling and simulation of heat front propagation in the iron ore sintering process, ISIJ Int., 44, 11, 10.2355/isijinternational.44.11

Ahn, 2013, Process simulation of iron ore sintering bed with flue gas recirculation: Part 1 – Modelling approach, Ironmaking Steelmaking, 40, 120, 10.1179/1743281212Y.0000000071

Ahn, 2013, Process simulation of iron ore sintering bed with flue gas recirculation: Part 2 – Parametric variation of gas conditions, Ironmaking Steelmaking, 40, 128, 10.1179/1743281212Y.0000000072

Machida, 2009, Optimization of coke breeze segregation in sintering bed under high pisolite ore ratio, ISIJ Int., 49, 667, 10.2355/isijinternational.49.667

Zhou, 2015, Influence of coke combustion on NOx emission during iron ore sintering, Energy Fuels, 29, 974, 10.1021/ef502524y

Kang, 2011, Influence of oxygen supply in an iron ore sintering process, ISIJ Int., 51, 1065, 10.2355/isijinternational.51.1065

Oyama, 2011, Development of secondary-fuel injection technology for energy reduction in the iron ore sintering process, ISIJ Int., 51, 913, 10.2355/isijinternational.51.913

de Castro, 2014, Model predictions for new iron ore sintering process technology based on biomass and gaseous fuels, Adv. Mater. Res., 918, 136, 10.4028/www.scientific.net/AMR.918.136

Iwami, 2013, Effect of oxygen enrichment on sintering with combined usage of coke breeze and gaseous fuel, ISIJ Int., 53, 1633, 10.2355/isijinternational.53.1633

Hou, 2011, Improved distribution of fuel particles in iron ore sintering process, Ironmaking Steelmaking, 38, 379, 10.1179/1743281211Y.0000000017

Oyama, 2005, Development of coating granulation process at commercial sintering plant for improving productivity and reducibility, ISIJ Int., 45, 817, 10.2355/isijinternational.45.817

Loo, 2005, Fundamental factors determining laboratory sintering results, ISIJ Int., 45, 449, 10.2355/isijinternational.45.449

Loo, 2005, Fundamental insights into the sintering behaviour of goethitic ore blends, ISIJ Int., 45, 459, 10.2355/isijinternational.45.459

Zhou, 2015, Effect of flame-front speed on the pisolite-ore sintering process, Appl. Therm. Eng., 75, 307, 10.1016/j.applthermaleng.2014.09.050

Abreu, 2015, Operational and environmental assessment on the use of charcoal in iron ore sinter production, J. Cleaner Prod., 101, 387, 10.1016/j.jclepro.2015.04.015

Wu, 2014, Influencing factors and effects of assimilation characteristic of iron ores in sintering process, ISIJ Int., 54, 582, 10.2355/isijinternational.54.582

Cheng, 2016, Characteristics of charcoal combustion and its effects on iron-ore sintering performance, Appl. Energy, 161, 364, 10.1016/j.apenergy.2015.09.095

Aldushin, 1999, Maximal energy accumulation in a superadiabatic filtration combustion wave, Combust. Flame, 118, 76, 10.1016/S0010-2180(98)00163-1

Ooi, 2011, The effect of charcoal combustion on iron-ore sintering performance and emission of persistent organic pollutants, Combust. Flame, 158, 979, 10.1016/j.combustflame.2011.01.020

Gan, 2015, Application of biomass fuel in iron ore sintering: influencing mechanism and emission reduction, Ironmaking Steelmaking, 42, 27, 10.1179/1743281214Y.0000000194

Loo, 2012, Effect of iron ores and sintering conditions on flame front properties, ISIJ Int., 52, 967, 10.2355/isijinternational.52.967

Pironi, 2009, Small-scale forward smouldering experiments for remediation of coal tar in inert media, Proc. Combust. Inst., 32, 1957, 10.1016/j.proci.2008.06.184

Law, 2006, 602

Lu, 2013, Substitution of charcoal for coke breeze in iron ore sintering, ISIJ Int., 53, 1607, 10.2355/isijinternational.53.1607

Yasumoto, 1982, Continuous measuring of heat pattern in sintering bed and its application to sintering operation, Kawaaski Steel Tech. Rep., 5, 1

Arbeithuber, 1995, Fuzzy control of an iron ore sintering plant, Control Eng. Pract., 3, 1669, 10.1016/0967-0661(95)00179-X