Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography

Yinjin Ma1,2, Yong Ren3, Peng Feng2, Peng He2, Xiaodong Guo2,4, Biao Wei2
1School of Data Science, Tongren University, Tongren, China
2Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
3School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China
4Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

G. Wang, H.Y. Yu, B.D. Man, An outlook on x-ray CT research and development. Med. Phys. 35, 1051–1064 (2008). https://doi.org/10.1118/1.2836950

P. Feng, W.X. Cong, B. Wei et al., Analytic Comparison between X-ray Fluorescence CT and K-edge CT. IEEE Trans. Biomed. Eng. 61(3), 975–985 (2014). https://doi.org/10.1109/TBME.2013.2294677

H.K. Yang, K.C. Liang, K.J. Kang et al., Slice-wise reconstruction for low-dose cone-beam CT using a deep residual convolutional neural network. Nucl. Sci. Tech. 30(59), 1–9 (2018). https://doi.org/10.1007/s41365-019-0581-7

R.S.T. Kang, T. Wu, Z.H. Chen et al., 3D imaging of rat brain neural network using synchrotron radiation. Nucl. Tech. 43(7), 070101 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.070101 ((in Chinese))

I. Barreto, N. Verma, N. Quails et al., Patient size matters: Effect of tube current modulation on size-specific dose estimates (SSDE) and image quality in low-dose lung cancer screening. CT J. App. Clin. Med. Phys. 21, 87–94 (2020). https://doi.org/10.1002/acm2.12857

H. Chen, Y. Zhang, W.H. Zhang et al., Low-dose CT via convolutional neural network. Biomed. Opt. Exp. 8, 679–694 (2017). https://doi.org/10.1364/boe.8.000679

M. Balda, J. Hornegger, B. Heismann, Ray contribution masks for structure adaptive sinogram filtering. IEEE Trans Med Imag. 31, 1228–1239 (2012). https://doi.org/10.1109/Tmi.2012.2187213

A. Manduca, L.F. Yu, J.D. Trzasko et al., Projection space denoising with bilateral filtering and CT noise modeling for dose reduction. CT. Med. Phys. 36, 4911–4919 (2009). https://doi.org/10.1118/1.3232004

T.F. Li, X. Li, J. Wang et al., Nonlinear sinogram smoothing for low-dose X-ray CT. IEEE Trans. Nucl. Sci. 51, 2505–2513 (2004). https://doi.org/10.1109/tns.2004.834824

J. Wang, T.F. Li, H.B. Lu et al., Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. IEEE Trans. Med. Imag. 25, 1272–1283 (2006). https://doi.org/10.1109/tmi.2006.882141

M.F. Duarte, Y.C. Eldar, Structured compressed sensing: From theory to applications. IEEE Trans. Sig. Process. 59, 4053–4085 (2011). https://doi.org/10.1109/tsp.2011.2161982

H.W. Tseng, S. Vedantham, A. Karellas, Cone-beam breast computed tomography using ultra-fast image reconstruction with constrained, total-variation minimization for suppression of artifacts. Phys. Med. Eur. J. Med. Phys. 73, 117–124 (2020). https://doi.org/10.1016/j.ejmp.2020.04.020

Y. Chen, L.Y. Shi, Q.J. Feng et al., Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans. Med. Imag. 33, 2271–2292 (2014). https://doi.org/10.1109/tmi.2014.2336860

J.F. Cai, X. Jia, H. Gao et al., Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-principle study. IEEE Trans. Med. Imag. 33, 1581–1591 (2014). https://doi.org/10.1109/Tmi.2014.2319055

Y. Zhang, Y. Xi, Q.S. Yang et al., Spectral CT reconstruction with image sparsity and spectral mean. IEEE Trans. Comput. Imag. 2, 510–523 (2016). https://doi.org/10.1109/tci.2016.2609414

L.Z. Deng, P. He, S.H. Jiang et al., Hybrid reconstruction algorithm for computed tomography based on diagonal total variation. Nucl. Sci. Tech. 29(3), 45 (2018). https://doi.org/10.1007/s41365-018-0376-2

Z.B. Li, L.F. Yu, J.D. Trzasko et al., Adaptive nonlocal means filtering based on local noise level for CT denoising. Med. Phys. 41, 011908 (2014). https://doi.org/10.1118/1.4851635

D. Kang, P. Slomka, R. Nakazato et al., Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm. Proc. SPIE. 6869, 1–6 (2013). https://doi.org/10.1117/12.2006907

Y. Chen, X.D. Yin, L.Y. Shi et al., Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys. Med. Biol. 58, 5803–5820 (2013). https://doi.org/10.1088/0031-9155/58/16/5803

M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation IEEE Trans. Sign. Process. 54, 4311–4322 (2006). https://doi.org/10.1109/tsp.2006.881199

Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

G. Zhao, H.L. Xiong, G.D. Wu et al., Evaluation study on comprehensive efficiency of physical protection system based on neural network. Nucl. Tech. 43(2), 020602 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.020602(in Chinese)

Y. S. Han, J. Yoo, J. C. Ye, Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. 2016.

H. Chen, Y. Zhang, M.K. Kalra et al., Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imag. 36, 2524–2535 (2017). https://doi.org/10.1109/tmi.2017.2715284

Y. Ma, P. Feng, P. He et al., Low-dose CT with a deep convolutional neural network blocks model using mean squared error loss and structural similar loss. Proc. SPIE 11209I, 1–13 (2019). https://doi.org/10.1117/12.2542662

H. Shan, A. Padole, F. Homayounie et al., Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nature Mach. Intel. 1, 269–276 (2019). https://doi.org/10.1038/s42256-019-0057-9

I. J. Goodfellow, J. Pouget, M. Mirza et al, Generative adversarial nets. 2014.

Q. Yang, P. Yan, Y.B. Yan et al., Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imag. 37, 1348–1357 (2018). https://doi.org/10.1109/tmi.2018.2827462

Y. Ma, B. Wei, P, Feng et al, Low-dose CT image denoising using a generative adversarial network with a hybrid loss function for noise learning. IEEE Access 8, 67519–67529 (2020). https://doi.org/10.1109/access.2020.2986388

B.E.H. Claus, Y. Jin, L.A. Gjesteby et al., (2017) Metal-artifact reduction using deep-learning based sinogram completion: initial results. Proc. Fully3D. 45: 631–635. https://doi.org/https://doi.org/10.12059/Fully3D.2017-11-3110004

H.S. Park, S.M. Lee, H.P. Kim et al., CT sinogram-consistency learning for metal-induced beam hardening correction. Med. Phys. 45, 5376–5384 (2018). https://doi.org/10.1002/mp.13199

Y. Zhang, Y. Tian, Y. Kong et al., Residual dense network for image restoration. 2018.

I.A. Elbakri, J.A. Fessler, Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE Trans. Med. Imag. 21, 89–99 (2002). https://doi.org/10.1109/42.993128

K. He, X. Zhang, S. Ren et al, 2016 Deep residual learning for image recognition. Proc. IEEE Conf. Comput. vis. Pattern Recognit. (CVPR) 770–778 (2016). https://doi.org/https://doi.org/10.1109/Cvpr.2016.90

G. Huang, Z. Liu, L. Maaten et al., Densely connected convolutional networks. 2017.

H. Zhao, O. Gallo, I. Frosio et al., Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imag. 3, 47–57 (2017). https://doi.org/10.1109/Tci.2016.2644865

C. McCollough, Overview of the low dose CT grand challenge. Med. Phys. 43(6), 3759–3760 (2016). https://doi.org/10.1118/1.4957556