Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography
Tóm tắt
Từ khóa
Tài liệu tham khảo
G. Wang, H.Y. Yu, B.D. Man, An outlook on x-ray CT research and development. Med. Phys. 35, 1051–1064 (2008). https://doi.org/10.1118/1.2836950
P. Feng, W.X. Cong, B. Wei et al., Analytic Comparison between X-ray Fluorescence CT and K-edge CT. IEEE Trans. Biomed. Eng. 61(3), 975–985 (2014). https://doi.org/10.1109/TBME.2013.2294677
H.K. Yang, K.C. Liang, K.J. Kang et al., Slice-wise reconstruction for low-dose cone-beam CT using a deep residual convolutional neural network. Nucl. Sci. Tech. 30(59), 1–9 (2018). https://doi.org/10.1007/s41365-019-0581-7
R.S.T. Kang, T. Wu, Z.H. Chen et al., 3D imaging of rat brain neural network using synchrotron radiation. Nucl. Tech. 43(7), 070101 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.070101 ((in Chinese))
I. Barreto, N. Verma, N. Quails et al., Patient size matters: Effect of tube current modulation on size-specific dose estimates (SSDE) and image quality in low-dose lung cancer screening. CT J. App. Clin. Med. Phys. 21, 87–94 (2020). https://doi.org/10.1002/acm2.12857
H. Chen, Y. Zhang, W.H. Zhang et al., Low-dose CT via convolutional neural network. Biomed. Opt. Exp. 8, 679–694 (2017). https://doi.org/10.1364/boe.8.000679
M. Balda, J. Hornegger, B. Heismann, Ray contribution masks for structure adaptive sinogram filtering. IEEE Trans Med Imag. 31, 1228–1239 (2012). https://doi.org/10.1109/Tmi.2012.2187213
A. Manduca, L.F. Yu, J.D. Trzasko et al., Projection space denoising with bilateral filtering and CT noise modeling for dose reduction. CT. Med. Phys. 36, 4911–4919 (2009). https://doi.org/10.1118/1.3232004
T.F. Li, X. Li, J. Wang et al., Nonlinear sinogram smoothing for low-dose X-ray CT. IEEE Trans. Nucl. Sci. 51, 2505–2513 (2004). https://doi.org/10.1109/tns.2004.834824
J. Wang, T.F. Li, H.B. Lu et al., Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. IEEE Trans. Med. Imag. 25, 1272–1283 (2006). https://doi.org/10.1109/tmi.2006.882141
M.F. Duarte, Y.C. Eldar, Structured compressed sensing: From theory to applications. IEEE Trans. Sig. Process. 59, 4053–4085 (2011). https://doi.org/10.1109/tsp.2011.2161982
H.W. Tseng, S. Vedantham, A. Karellas, Cone-beam breast computed tomography using ultra-fast image reconstruction with constrained, total-variation minimization for suppression of artifacts. Phys. Med. Eur. J. Med. Phys. 73, 117–124 (2020). https://doi.org/10.1016/j.ejmp.2020.04.020
Y. Chen, L.Y. Shi, Q.J. Feng et al., Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans. Med. Imag. 33, 2271–2292 (2014). https://doi.org/10.1109/tmi.2014.2336860
J.F. Cai, X. Jia, H. Gao et al., Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-principle study. IEEE Trans. Med. Imag. 33, 1581–1591 (2014). https://doi.org/10.1109/Tmi.2014.2319055
Y. Zhang, Y. Xi, Q.S. Yang et al., Spectral CT reconstruction with image sparsity and spectral mean. IEEE Trans. Comput. Imag. 2, 510–523 (2016). https://doi.org/10.1109/tci.2016.2609414
L.Z. Deng, P. He, S.H. Jiang et al., Hybrid reconstruction algorithm for computed tomography based on diagonal total variation. Nucl. Sci. Tech. 29(3), 45 (2018). https://doi.org/10.1007/s41365-018-0376-2
Z.B. Li, L.F. Yu, J.D. Trzasko et al., Adaptive nonlocal means filtering based on local noise level for CT denoising. Med. Phys. 41, 011908 (2014). https://doi.org/10.1118/1.4851635
D. Kang, P. Slomka, R. Nakazato et al., Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm. Proc. SPIE. 6869, 1–6 (2013). https://doi.org/10.1117/12.2006907
Y. Chen, X.D. Yin, L.Y. Shi et al., Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys. Med. Biol. 58, 5803–5820 (2013). https://doi.org/10.1088/0031-9155/58/16/5803
M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation IEEE Trans. Sign. Process. 54, 4311–4322 (2006). https://doi.org/10.1109/tsp.2006.881199
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
G. Zhao, H.L. Xiong, G.D. Wu et al., Evaluation study on comprehensive efficiency of physical protection system based on neural network. Nucl. Tech. 43(2), 020602 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.020602(in Chinese)
Y. S. Han, J. Yoo, J. C. Ye, Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. 2016.
H. Chen, Y. Zhang, M.K. Kalra et al., Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imag. 36, 2524–2535 (2017). https://doi.org/10.1109/tmi.2017.2715284
Y. Ma, P. Feng, P. He et al., Low-dose CT with a deep convolutional neural network blocks model using mean squared error loss and structural similar loss. Proc. SPIE 11209I, 1–13 (2019). https://doi.org/10.1117/12.2542662
H. Shan, A. Padole, F. Homayounie et al., Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nature Mach. Intel. 1, 269–276 (2019). https://doi.org/10.1038/s42256-019-0057-9
I. J. Goodfellow, J. Pouget, M. Mirza et al, Generative adversarial nets. 2014.
Q. Yang, P. Yan, Y.B. Yan et al., Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imag. 37, 1348–1357 (2018). https://doi.org/10.1109/tmi.2018.2827462
Y. Ma, B. Wei, P, Feng et al, Low-dose CT image denoising using a generative adversarial network with a hybrid loss function for noise learning. IEEE Access 8, 67519–67529 (2020). https://doi.org/10.1109/access.2020.2986388
B.E.H. Claus, Y. Jin, L.A. Gjesteby et al., (2017) Metal-artifact reduction using deep-learning based sinogram completion: initial results. Proc. Fully3D. 45: 631–635. https://doi.org/https://doi.org/10.12059/Fully3D.2017-11-3110004
H.S. Park, S.M. Lee, H.P. Kim et al., CT sinogram-consistency learning for metal-induced beam hardening correction. Med. Phys. 45, 5376–5384 (2018). https://doi.org/10.1002/mp.13199
I.A. Elbakri, J.A. Fessler, Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE Trans. Med. Imag. 21, 89–99 (2002). https://doi.org/10.1109/42.993128
K. He, X. Zhang, S. Ren et al, 2016 Deep residual learning for image recognition. Proc. IEEE Conf. Comput. vis. Pattern Recognit. (CVPR) 770–778 (2016). https://doi.org/https://doi.org/10.1109/Cvpr.2016.90
H. Zhao, O. Gallo, I. Frosio et al., Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imag. 3, 47–57 (2017). https://doi.org/10.1109/Tci.2016.2644865