Singularities of elliptic mixed boundary problems. Application to boundary stabilization of hyperbolic systems

Proceedings of the Steklov Institute of Mathematics - Tập 270 - Trang 172-183 - 2010
J. -P. Lohéac1,2,3
1Département Mathématiques et Informatique, École Centrale de Lyon, Université de Lyon, Écully cedex, France
2Institut Camille Jordan (UMR 5208 du CNRS), Université Claude Bernard Lyon 1, Villeurbanne cedex, France
3Laboratoire J.-V. Poncelet (CNRS UMI 2615), Independent University of Moscow, Moscow, Russia

Tóm tắt

For elliptic partial differential equations, mixed boundary conditions generate singularities in the solution, mainly when the boundary of the domain is connected. We here consider two classical cases: the Laplace equation and the Lamé system. The knowledge of singularities allows us to construct adapted Rellich relations. These are useful in the problem of boundary stabilization of the wave equation and the elastodynamic system, respectively, when using the multiplier method.

Tài liệu tham khảo

F. Alabau and V. Komornik, “Boundary Observability, Controllability, and Stabilization of Linear Elastodynamic Systems,” SIAM J. Control Optim. 37(2), 521–542 (1999). R. Bey, A. Heminna, and J.-P. Lohéac, “Boundary Stabilization of the Linear Elastodynamic System by a Lyapunov-Type Method,” Rev. Mat. Complut. 16(2), 417–441 (2003). R. Bey, J.-P. Lohéac, and M. Moussaoui, “Singularities of the Solution of a Mixed Problem for a General Second Order Elliptic Equation and Boundary Stabilization of the Wave Equation,” J. Math. Pures Appl. 78, 1043–1067 (1999). R. Brossard and J.-P. Lohéac, “Stabilisation frontière du système élastodynamique dans un polygone plan,” C. R., Math., Acad. Sci. Paris 338, 213–218 (2004). R. Brossard and J.-P. Lohéac, “Boundary Stabilization of Elastodynamic Systems. Part I: Rellich-Type Relations for a Problem in Elasticity Involving Singularities,” Acta Appl. Math. 109(3), 875–901 (2010). R. Brossard and J.-P. Lohéac, “Boundary Stabilization of Elastodynamic Systems. II: The Case of a Linear Feedback,” J. Dyn. Control Syst. 16(3), 355–375 (2010). P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985), Monogr. Stud. Math. 24. P. Grisvard, “Contrôlabilité exacte des solutions de l’équation des ondes en présence de singularités,” J. Math. Pures Appl. 68, 215–259 (1989). A. Guesmia, “Observability, Controllability and Boundary Stabilization of Some Linear Elasticity Systems,” Acta Sci. Math. 64(1–2), 109–119 (1998). A. Guesmia, “On the Decay Estimates for Elasticity Systems with Some Localized Dissipations,” Asymptotic Anal. 22(1), 1–13 (2000). A. Haraux, “Semi-groupes linéaires et équations d’évolution linéaires périodiques,” Preprint 78011 (L.A.N. Univ. P. et M. Curie, Paris, 1978). L. F. Ho, “Observabilité frontière de l’équation des ondes,” C. R. Acad. Sci. Paris, Sér. 1, 302, 443–446 (1986). M. A. Horn, “Implications of Sharp Trace Regularity Results on Boundary Stabilization of the System of Linear Elasticity,” J. Math. Anal. Appl. 223, 126–150 (1998). V. Komornik, Exact Controllability and Stabilization: The Multiplier Method (Masson, Paris, 1994). V. Komornik, “Boundary Stabilization of Isotropic Elasticity Systems,” in Control of Partial Differential Equations and Applications (M. Dekker, New York, 1996), Lect. Notes Pure Appl. Math. 174, pp. 135–146. V. Komornik and E. Zuazua, “A Direct Method for the Boundary Stabilization of the Wave Equation,” J. Math. Pures Appl. 69, 33–54 (1990). J. Lagnese, “Boundary Stabilization of Linear Elastodynamic Systems,” SIAM J. Control Optim. 21, 968–984 (1983). J. E. Lagnese, “Uniform Asymptotic Energy Estimates for Solutions of the Equations of Dynamic Plane Elasticity with Nonlinear Dissipation at the Boundary,” Nonlinear Anal., Theory Methods Appl. 16, 35–54 (1991). B. Mérouani, “Solutions singulières du système de l’élasticité dans un polygone pour différentes conditions aux limites,” Maghreb Math. Rev. 5(1–2), 95–112 (1996). M. Moussaoui, “Singularités des solutions du problème mêlé, contrôlabilité exacte et stabilisation frontière,” ESAIM Proc. 2, 195–201 (1997). E. Shamir, “Regularization of Mixed Second-Order Elliptic Problems,” Isr. J. Math. 6, 150–168 (1968).