Singular solutions for fractional parabolic boundary value problems

Hardy Chan1,2, David Gómez-Castro3,4, Juan Luis Vázquez5
1Department of Mathematics, ETH Zürich, Zurich, Switzerland
2ICMAT, Consejo Superior de Investigaciones Científicas, Madrid, Spain
3Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Madrid, Spain
4Mathematical Institute, University of Oxford, Oxford, UK
5Depto. de Matemáticas, Univ. Autónoma de Madrid, Madrid, Spain

Tóm tắt

The standard problem for the classical heat equation posed in a bounded domain $$\Omega $$ of $${\mathbb {R}}^n$$ is the initial and boundary value problem. If the Laplace operator is replaced by a version of the fractional Laplacian, the initial and boundary value problem can still be solved on the condition that the non-zero boundary data must be singular, i.e., the solution u(t, x) blows up as x approaches $$\partial \Omega $$ in a definite way. In this paper we construct a theory of existence and uniqueness of solutions of the parabolic problem with singular data taken in a very precise sense, and also admitting initial data and a forcing term. When the boundary data are zero we recover the standard fractional heat semigroup. A general class of integro-differential operators may replace the classical fractional Laplacian operators, thus enlarging the scope of the work. As further results on the spectral theory of the fractional heat semigroup, we show that a one-sided Weyl-type law holds in the general class, which was previously known for the restricted and spectral fractional Laplacians, but is new for the censored (or regional) fractional Laplacian. This yields bounds on the fractional heat kernel.

Tài liệu tham khảo

Abatangelo, N.: Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete Contin. Dyn. Syst. Ser. A 35(12), 5555–5607 (2015). arXiv:1310.3193 Abatangelo, N.: Large solutions for fractional Laplacian operators (2015). arXiv:1511.00571 Abatangelo, N., Dupaigne, L.: Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Ann. l’Institut Henri Poincare Anal. Non Lineaire 34(2), 439–467 (2017). arXiv:1509.06275 Abatangelo, N., Gómez-Castro, D., Vázquez, J. L.: Singular boundary behaviour and large solutions for fractional elliptic equations, pp. 1–42 (2019). arXiv:1910.00366 Blumenthal, R.M., Getoor, R.K.: The asymptotic distribution of the eigenvalues for a class of Markov operators. Pac. J. Math. 9, 399–408 (1959) Bogdan, K., Grzywny, T., Ryznar, M.: Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. Ann. Probab. 38(5), 1901–1923 (2010) Bonforte, M., Figalli, A., Vázquez, J.L.: Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. Calc. Var. Partial Differ. Equ. 57(2), 1–34 (2018) Bonforte, M., Sire, Y., Vázquez, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. Ser. A 35(12), 5725–5767 (2015). arXiv: 1404.6195 Chan, H., Gómez-Castro, D., Vázquez, J.L.: Blow-up phenomena in nonlocal eigenvalue problems: when theories of L1 and L2 meet J. Funct. Anal. 280(7), 108845 (2021) Chen, H., Wei, Y.: Non-existence of Poisson problem involving regional fractional Laplacian with order in (0; \({\frac{1}{2}}\)] (2020). arXiv:2007.05775 Chen, Z.Q., Kim, P., Song, R.: Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc. 12(5), 1307–1327 (2010) Chen, Z.Q., Kim, P., Song, R.: Two-sided heat kernel estimates for censored stable-like processes. Probab. Theory Relat. Fields 146(3), 361–399 (2009) Cheng, S.Y., Li, P.: Heat kernel estimates and lower bound of eigenvalues. Comment. Math. Helv. 56(1), 327–338 (1981) Coulhon, T., Hauer, D.: Regularisation effects of nonlinear semigroups, pp. 1–124 (2016). arXiv:1604.08737 Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989) Fernández-Real, X., Ros-Oton, X.: Boundary regularity for the fractional heat equation. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales Serie A: Matematicas 110(1), 49–64 (2016) Frank, R.L., Geisinger, L.: Refined semiclassical asymptotics for fractional powers of the Laplace operator. J. Reine Angew. Math. 712, 1–37 (2016) Geisinger, L.: A short proof of Weyl’s law for fractional differential operators. J. Math. Phys. 55(1), 011504 (2014) Gómez-Castro, D., Vázquez, J.L.: The fractional Schrödinger equation with singular potential and measure data. Discrete Contin. Dyn. Syst. A 39(12), 7113–7139 (2019). arXiv:1812.02120 Grubb, G.: Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. Appl. 421(2), 1616–1634 (2015) Payne, L.E., Pólya, G., Weinberger, H.F.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289–298 (1956) Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Applied Mathematical Sciences. Springer, New York (1983) Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. International Press, Boston (1994) Song, R.: Sharp bounds on the density, Green function and jumping function of subordinate killed BM. Probab. Theory Relat. Fields 128(4), 606–628 (2004) Song, R., Xie, L., Xie, Y.: Sharp heat kernel estimates for spectral fractional Laplacian perturbed by gradient. Sci. China Math. 63(11), 2343–2362 (2020)