Singular solutions for fractional parabolic boundary value problems
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas - Tập 116 - Trang 1-38 - 2022
Tóm tắt
The standard problem for the classical heat equation posed in a bounded domain
$$\Omega $$
of
$${\mathbb {R}}^n$$
is the initial and boundary value problem. If the Laplace operator is replaced by a version of the fractional Laplacian, the initial and boundary value problem can still be solved on the condition that the non-zero boundary data must be singular, i.e., the solution u(t, x) blows up as x approaches
$$\partial \Omega $$
in a definite way. In this paper we construct a theory of existence and uniqueness of solutions of the parabolic problem with singular data taken in a very precise sense, and also admitting initial data and a forcing term. When the boundary data are zero we recover the standard fractional heat semigroup. A general class of integro-differential operators may replace the classical fractional Laplacian operators, thus enlarging the scope of the work. As further results on the spectral theory of the fractional heat semigroup, we show that a one-sided Weyl-type law holds in the general class, which was previously known for the restricted and spectral fractional Laplacians, but is new for the censored (or regional) fractional Laplacian. This yields bounds on the fractional heat kernel.
Tài liệu tham khảo
Abatangelo, N.: Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete Contin. Dyn. Syst. Ser. A 35(12), 5555–5607 (2015). arXiv:1310.3193
Abatangelo, N.: Large solutions for fractional Laplacian operators (2015). arXiv:1511.00571
Abatangelo, N., Dupaigne, L.: Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Ann. l’Institut Henri Poincare Anal. Non Lineaire 34(2), 439–467 (2017). arXiv:1509.06275
Abatangelo, N., Gómez-Castro, D., Vázquez, J. L.: Singular boundary behaviour and large solutions for fractional elliptic equations, pp. 1–42 (2019). arXiv:1910.00366
Blumenthal, R.M., Getoor, R.K.: The asymptotic distribution of the eigenvalues for a class of Markov operators. Pac. J. Math. 9, 399–408 (1959)
Bogdan, K., Grzywny, T., Ryznar, M.: Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. Ann. Probab. 38(5), 1901–1923 (2010)
Bonforte, M., Figalli, A., Vázquez, J.L.: Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. Calc. Var. Partial Differ. Equ. 57(2), 1–34 (2018)
Bonforte, M., Sire, Y., Vázquez, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. Ser. A 35(12), 5725–5767 (2015). arXiv: 1404.6195
Chan, H., Gómez-Castro, D., Vázquez, J.L.: Blow-up phenomena in nonlocal eigenvalue problems: when theories of L1 and L2 meet J. Funct. Anal. 280(7), 108845 (2021)
Chen, H., Wei, Y.: Non-existence of Poisson problem involving regional fractional Laplacian with order in (0; \({\frac{1}{2}}\)] (2020). arXiv:2007.05775
Chen, Z.Q., Kim, P., Song, R.: Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc. 12(5), 1307–1327 (2010)
Chen, Z.Q., Kim, P., Song, R.: Two-sided heat kernel estimates for censored stable-like processes. Probab. Theory Relat. Fields 146(3), 361–399 (2009)
Cheng, S.Y., Li, P.: Heat kernel estimates and lower bound of eigenvalues. Comment. Math. Helv. 56(1), 327–338 (1981)
Coulhon, T., Hauer, D.: Regularisation effects of nonlinear semigroups, pp. 1–124 (2016). arXiv:1604.08737
Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)
Fernández-Real, X., Ros-Oton, X.: Boundary regularity for the fractional heat equation. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales Serie A: Matematicas 110(1), 49–64 (2016)
Frank, R.L., Geisinger, L.: Refined semiclassical asymptotics for fractional powers of the Laplace operator. J. Reine Angew. Math. 712, 1–37 (2016)
Geisinger, L.: A short proof of Weyl’s law for fractional differential operators. J. Math. Phys. 55(1), 011504 (2014)
Gómez-Castro, D., Vázquez, J.L.: The fractional Schrödinger equation with singular potential and measure data. Discrete Contin. Dyn. Syst. A 39(12), 7113–7139 (2019). arXiv:1812.02120
Grubb, G.: Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. Appl. 421(2), 1616–1634 (2015)
Payne, L.E., Pólya, G., Weinberger, H.F.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289–298 (1956)
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Applied Mathematical Sciences. Springer, New York (1983)
Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. International Press, Boston (1994)
Song, R.: Sharp bounds on the density, Green function and jumping function of subordinate killed BM. Probab. Theory Relat. Fields 128(4), 606–628 (2004)
Song, R., Xie, L., Xie, Y.: Sharp heat kernel estimates for spectral fractional Laplacian perturbed by gradient. Sci. China Math. 63(11), 2343–2362 (2020)