Singular and fractional integral operators on Campanato spaces with variable growth conditions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Coifman, R.R., Weiss, G.: Analyse Harmonique Non-commutative Sur Certains Espaces Homogenes. Lecture Notes in Math., vol. 242. Springer, Berlin (1971)
Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)
Diening, L.: Maximal function on generalized Lebesgue spaces L p(⋅). Math. Inequal. Appl. 7(2), 245–253 (2004)
Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p(⋅) and W k,p(⋅). Math. Nachr. 268, 31–43 (2004)
Diening, L., Ružička, M.: Calderón-Zygmund operators on generalized Lebesgue spaces L p(⋅) and problems related to fluid dynamics. J. Reine Angew. Math. 563, 197–220 (2003)
Eridani, Gunawan, H., Nakai, E.: On generalized fractional integral operators. Sci. Math. Jpn. 60, 539–550 (2004)
Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potential space of variable exponent. Math. Nachr. 279, 1463–1473 (2006)
Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn. Math. 31(2), 495–522 (2006)
Gatto, A.E., Vági, S.: Fractional integrals on spaces of homogeneous type. In: Analysis and Partial Differential Equations, pp. 171–216. Dekker, New York (1990)
Gatto, A.E., Segovia, C., Vági, S.: On fractional differentiation and integration on spaces of homogeneous type. Rev. Mat. Iberoam. 12(1), 111–145 (1996)
Lerner, A.K.: Some remarks on the Hardy-Littlewood maximal function on variable L p spaces. Math. Z. 251, 509–521 (2005)
Macías, R.A.: C. Segovia Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257–270 (1979)
Macías, R.A., Segovia, C.: Singular integrals on generalized Lipschitz and Hardy spaces. Stud. Math. 65(1), 55–75 (1979)
Mizuta, Y., Shimomura, T.: Sobolev’s inequality for Riesz potentials with variable exponent satisfying a log-Hölder condition at infinity. J. Math. Anal. Appl. 311, 268–288 (2005)
Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent. J. Math. Soc. Jpn. 60(2), 583–602 (2008)
Nakai, E.: Pointwise multipliers for functions of weighted bounded mean oscillation. Stud. Math. 105, 105–119 (1993)
Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)
Nakai, E.: On generalized fractional integrals on the weak Orlicz spaces, BMO φ , the Morrey spaces and the Campanato spaces. In: Function Spaces, Interpolation Theory and Related Topics, pp. 389–401. de Gruyter, Berlin (2002)
Nakai, E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Stud. Math. 176, 1–19 (2006)
Nakai, E.: A generalization of Hardy spaces H p by using atoms. Acta Math. Sinica 24, 1243–1268 (2008)
Nakai, E., Yabuta, K.: Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Jpn. 37(2), 207–218 (1985)
Nakai, E., Yabuta, K.: Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Math. Jpn. 46, 15–28 (1997)