Singlet–triplet excitation energies of naphthyl cations: High level composite method calculations suggest a singlet ground state
Tài liệu tham khảo
Carey, 2007
Carey, 2007
Lowry, 1987
Klan, 2009
Smith, 2007
Butcher, 1987, A study of the phenyl radical by vacuum ultraviolet photoelectron spectroscopy, Chem. Phys., 115, 261, 10.1016/0301-0104(87)80040-X
Blush, 1992, Photoionization mass and photoelectron spectroscopy of radicals, carbenes, and biradicals, Acc. Chem. Res., 25, 385, 10.1021/ar00021a001
Nicolaides, 1997, Phenyl radical, cation, and anion. The triplet-singlet gap and higher excited states of the phenyl cation, J. Am. Chem. Soc., 119, 8083, 10.1021/ja970808s
Galue, 2011, Spectroscopic evidence for a triplet ground state in the naphthyl cation, Angew. Chem. Int. Ed., 50, 7004, 10.1002/anie.201102333
Rayne, 2011, A comparison of density functional theory (DFT) methods for estimating the singlet–triplet (S0–T1) excitation energies of benzene and polyacenes, Comput. Theor. Chem., 976, 105, 10.1016/j.comptc.2011.08.010
Rayne, 2011, Singlet–triplet (S0→T1) excitation energies of the [4×n] rectangular graphene nanoribbon series (n=2–6): a comparative theoretical study, Comput. Theor. Chem., 977, 163, 10.1016/j.comptc.2011.09.021
Hajgato, 2011, Focal point analysis of the singlet–triplet energy gap of octacene and larger acenes, J. Phys. Chem. A, 115, 9282, 10.1021/jp2043043
Hajgato, 2009, A benchmark theoretical study of the electronic ground state and of the singlet–triplet split of benzene and linear acenes, J. Chem. Phys., 131, 224321, 10.1063/1.3270190
Huzak, 2011, Half-metallicity and spin-contamination of the electronic ground state of graphene nanoribbons and related systems: an impossible compromise?, J. Chem. Phys., 135, 104704, 10.1063/1.3626554
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2010.
Allouche, 2011, Gabedit: a graphical user interface for computational chemistry softwares, J. Comput. Chem., 32, 174, 10.1002/jcc.21600
Ascenzi, 2004, Reactivity of C10H7+ and C10D7+ with H2 and D2, J. Chem. Phys., 121, 6728, 10.1063/1.1782771
Woodcock, 2007, Carbene stabilization by aryl substituents. Is bigger better?, J. Am. Chem. Soc., 129, 3763, 10.1021/ja068899t
Mendez, 1999, A hard-soft acid-base and DFT analysis of singlet–triplet gaps and the addition of singlet carbenes to alkenes, J. Org. Chem., 64, 7061, 10.1021/jo990584r
Zhou, 2009, Reinvestigation of the ordering of the low-lying electronic states of cyclobutanetetraone with CASPT2, CCSD(T), G3B3, ccCA, and CBS-QB3 calculations, Mol. Phys., 107, 863, 10.1080/00268970802672650
Gronert, 2011, Stabilities of carbenes: independent measures for singlets and triplets, J. Am. Chem. Soc., 133, 3381, 10.1021/ja1071493
Winter, 2010, Vinyl cations substituted with β π-donors have triplet ground states, J. Am. Chem. Soc., 132, 215, 10.1021/ja906139m
Leopold, 1984, Laser photoelectron spectroscopy of vibrationally relaxed CH2-: a reinvestigation of the singlet–triplet splitting in methylene, J. Chem. Phys., 81, 1048, 10.1063/1.447741
Murray, 1988, Photoelectron spectroscopy of the halocarbene anions HCF−, HCCl−, HCBr−, HCI−, CF2-, and CCl2-, J. Chem. Phys., 89, 5442, 10.1063/1.455596
Admasu, 1997, Laser flash photolysis study of phenylcarbene and pentafluorophenylcarbene, J. Phys. Chem. A, 101, 3832, 10.1021/jp963332s
Gibson, 1985, Photoionization of the amidogen radical, J. Chem. Phys., 83, 4319, 10.1063/1.449045
Kabbadj, 1996, Infrared spectroscopy of the amidogen ion, NH2+, J. Mol. Spectrosc., 175, 277, 10.1006/jmsp.1996.0033
Nyden, 1981, Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions, J. Chem. Phys., 75, 1843, 10.1063/1.442208
Petersson, 1988, A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms, J. Chem. Phys., 89, 2193, 10.1063/1.455064
Petersson, 1991, A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms, J. Chem. Phys., 94, 6081, 10.1063/1.460447
Petersson, 1991, A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods, J. Chem. Phys., 94, 6091, 10.1063/1.460448
Montgomery, 1994, A complete basis set model chemistry. IV. An improved atomic pair natural orbital method, J. Chem. Phys., 101, 5900, 10.1063/1.467306
Ochterski, 1996, A complete basis set model chemistry. V. Extensions to six or more heavy atoms, J. Chem. Phys., 104, 2598, 10.1063/1.470985
Montgomery, 1999, A complete basis set model chemistry. VI. Use of density functional geometries and frequencies, J. Chem. Phys., 110, 2822, 10.1063/1.477924
Montgomery, 2000, A complete basis set model chemistry. VII. Use of the minimum population localization method, J. Chem. Phys., 112, 6532, 10.1063/1.481224
Baboul, 1999, Gaussian-3 theory using density functional geometries and zero-point energies, J. Chem. Phys., 110, 7650, 10.1063/1.478676
Curtiss, 2007, Gaussian-4 theory using reduced order perturbation theory, J. Chem. Phys., 127, 124105, 10.1063/1.2770701
Curtiss, 2007, Gaussian-4 theory, J. Chem. Phys., 126, 84108, 10.1063/1.2436888
Becke, 1993, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913
Lee, 1988, Development of the Colle–Salvetti correlation energy formula into a functional of the electron density, Phys. Rev. B, 37, 785, 10.1103/PhysRevB.37.785
Miehlich, 1989, Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett., 157, 200, 10.1016/0009-2614(89)87234-3
Schaefer, 1992, Fully optimized contracted Gaussian-basis sets for atoms Li to Kr, J. Chem. Phys., 97, 2571, 10.1063/1.463096
Schaefer, 1994, Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr, J. Chem. Phys., 100, 5829, 10.1063/1.467146
Curtiss, 1998, Gaussian-3 (G3) theory for molecules containing first and second-row atoms, J. Chem. Phys., 109, 7764, 10.1063/1.477422
Curtiss, 1999, Gaussian-3 theory using reduced Moller–Plesset order, J. Chem. Phys., 110, 4703, 10.1063/1.478385
Curtiss, 1991, Gaussian-2 theory for molecular energies of first- and second-row compounds, J. Chem. Phys., 94, 7221, 10.1063/1.460205
Curtiss, 1993, Gaussian-2 theory using reduced Moller–Plesset orders, J. Chem. Phys., 98, 1293, 10.1063/1.464297
Pople, 1989, Gaussian-1 theory: a general procedure for prediction of molecular energies, J. Chem. Phys., 90, 5622, 10.1063/1.456415
Head-Gordon, 1988, MP2 energy evaluation by direct methods, Chem. Phys. Lett., 153, 503, 10.1016/0009-2614(88)85250-3
Saebo, 1989, Avoiding the integral storage bottleneck in LCAO calculations of electron correlation, Chem. Phys. Lett., 154, 83, 10.1016/0009-2614(89)87442-1
Frisch, 1990, Direct MP2 gradient method, Chem. Phys. Lett., 166, 275, 10.1016/0009-2614(90)80029-D
Frisch, 1990, Semi-direct algorithms for the MP2 energy and gradient, Chem. Phys. Lett., 166, 281, 10.1016/0009-2614(90)80030-H
Head-Gordon, 1994, Analytic MP2 frequencies without fifth order storage: theory and application to bifurcated hydrogen bonds in the water hexamer, Chem. Phys. Lett., 220, 122, 10.1016/0009-2614(94)00116-2
Becke, 1988, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38, 3098, 10.1103/PhysRevA.38.3098
Rey, 1998, Virtual space level shifting and correlation energies, Int. J. Quantum Chem., 69, 581, 10.1002/(SICI)1097-461X(1998)69:4<581::AID-QUA16>3.0.CO;2-2
Krieger, 1999, Towards new approximations for the exchange–correlation functional using many-body perturbation theory, 463
Krieger, 2001, Construction and application of an accurate self-interaction-corrected correlation energy functional based on an electron gas with a gap, 48
Toulouse, 2002, Validation and assessment of an accurate approach to the correlation problem in density functional theory: the Krieger–Chen–Iafrate–Savin model, J. Chem. Phys., 117, 10465, 10.1063/1.1521432
Perdew, 1999, Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation, Phys. Rev. Lett., 82, 2544, 10.1103/PhysRevLett.82.2544
Raghavachari, 1978, Approximate 4th-order perturbation-theory of electron correlation energy, Int. J. Quantum Chem., 14, 91, 10.1002/qua.560140109
Raghavachari, 1980, Contribution of triple substitutions to the electron correlation energy in fourth-order perturbation theory, Chem. Phys. Lett., 72, 4244
Perdew, 1986, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, 33, 8822, 10.1103/PhysRevB.33.8822
Dahlke, 2005, Improved density functionals for water, J. Phys. Chem. B, 109, 15677, 10.1021/jp052436c
Handy, 2001, Left–right correlation energy, Mol. Phys., 99, 403, 10.1080/00268970010018431
Hoe, 2001, Assessment of a new local exchange functional OPTX, Chem. Phys. Lett., 341, 319, 10.1016/S0009-2614(01)00581-4
Tao, 2003, Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids, Phys. Rev. Lett., 91, 146401, 10.1103/PhysRevLett.91.146401
Schultz, 2005, Density functionals for inorganometallic and organometallic chemistry, J. Phys. Chem. A, 109, 11127, 10.1021/jp0539223
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Perdew, 1997, Errata: generalized gradient approximation made simple, Phys. Rev. Lett., 78, 1396, 10.1103/PhysRevLett.78.1396
Vosko, 1980, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 58, 1200, 10.1139/p80-159
Becke, 1996, Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing, J. Chem. Phys., 104, 1040, 10.1063/1.470829
Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864
Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133
Slater, 1974, vol. 4
Perdew, 1981, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 23, 5048, 10.1103/PhysRevB.23.5048
Adamo, 1998, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models, J. Chem. Phys., 108, 664, 10.1063/1.475428
Hamprecht, 1998, Development and assessment of new exchange–correlation functionals, J. Chem. Phys., 109, 6264, 10.1063/1.477267
Boese, 2000, New generalized gradient approximation functionals, J. Chem. Phys., 112, 1670, 10.1063/1.480732
Boese, 2001, A new parametrization of exchange–correlation generalized gradient approximation functionals, J. Chem. Phys., 114, 5497, 10.1063/1.1347371
Zhao, 2005, Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and their use to test density functional theory, J. Phys. Chem. A, 109, 2012, 10.1021/jp045141s
Van Voorhis, 1998, A novel form for the exchange–correlation energy functional, J. Chem. Phys., 109, 400, 10.1063/1.476577
Grimme, 2006, Semiempirical hybrid density functional with perturbative second-order correlation, J. Chem. Phys., 124, 34108, 10.1063/1.2148954
Schwabe, 2007, Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability, Phys. Chem. Chem. Phys., 9, 3397, 10.1039/b704725h
Wilson, 2001, Hybrid exchange–correlation functional determined from thermochemical data and ab initio potentials, J. Chem. Phys., 115, 9233, 10.1063/1.1412605
Boese, 2004, Development of density functionals for thermochemical kinetics, J. Chem. Phys., 121, 3405, 10.1063/1.1774975
Cohen, 2001, Dynamic correlation, Mol. Phys., 99, 607, 10.1080/00268970010023435
Zhao, 2006, Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers, J. Phys. Chem. A, 110, 5121, 10.1021/jp060231d
Zhao, 2008, Theor. Chem. Acc., 120, 215, 10.1007/s00214-007-0310-x
Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495
Pople, 1987, Quadratic configuration interaction – a general technique for determining electron correlation energies, J. Chem. Phys., 87, 5968, 10.1063/1.453520
Gauss, 1988, Analytical evaluation of energy gradients in quadratic configuration-interaction theory, Chem. Phys. Lett., 150, 280, 10.1016/0009-2614(88)80042-3
Salter, 1989, Analytic energy derivatives in many-body methods. I. First derivatives, J. Chem. Phys., 90, 1752, 10.1063/1.456069
Bartlett, 1978, Many-body perturbation-theory, coupled-pair many-electron theory, and importance of quadruple excitations for correlation problem, Int. J. Quantum Chem., 14, 561, 10.1002/qua.560140504
Pople, 1978, Electron correlation theories and their application to the study of simple reaction potential surfaces, Int. J. Quantum Chem., 14, 545, 10.1002/qua.560140503
Purvis, 1982, A full coupled-cluster singles and doubles model: the inclusion of disconnected triples, J. Chem. Phys., 76, 1910, 10.1063/1.443164
Scuseria, 1988, An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations, J. Chem. Phys., 89, 7382, 10.1063/1.455269
Scuseria, 1989, Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration–interaction (QCISD)?, J. Chem. Phys., 90, 3700, 10.1063/1.455827
Boese, 2002, New exchange–correlation density functionals: the role of the kinetic-energy density, J. Chem. Phys., 116, 9559, 10.1063/1.1476309
Schwabe, 2006, Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects, Phys. Chem. Chem. Phys., 8, 4398, 10.1039/b608478h
Zhao, 2006, Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions, J. Chem. Theory Comput., 2, 364, 10.1021/ct0502763
Becke, 1997, Density-functional thermochemistry. V. Systematic optimization of exchange–correlation functionals, J. Chem. Phys., 107, 8554, 10.1063/1.475007
Schmider, 1998, Optimized density functionals from the extended G2 test set, J. Chem. Phys., 108, 9624, 10.1063/1.476438
Zhao, 2004, Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions, J. Phys. Chem. A, 108, 6908, 10.1021/jp048147q
Zhao, 2005, Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics, Phys. Chem. Chem. Phys., 7, 43, 10.1039/b416937a
Xu, 2004, The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties, Proc. Natl. Acad. Sci. USA, 101, 2673, 10.1073/pnas.0308730100
Zhao, 2005, Exchange–correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions, J. Chem. Phys., 123, 194101, 10.1063/1.2126975
Perdew, 1992, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46, 6671, 10.1103/PhysRevB.46.6671
Perdew, 1993, Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 48, 4978, 10.1103/PhysRevB.48.4978.2
Perdew, 1996, Generalized gradient approximation for the exchange–correlation hole of a many-electron system, Phys. Rev. B, 54, 16533, 10.1103/PhysRevB.54.16533
Chai, 2008, Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections, Phys. Chem. Chem. Phys., 10, 6615, 10.1039/b810189b
Adamo, 1999, Toward reliable density functional methods without adjustable parameters: the PBE0 model, J. Chem. Phys., 110, 6158, 10.1063/1.478522
Yanai, 2004, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett., 393, 51, 10.1016/j.cplett.2004.06.011
Chai, 2008, Systematic optimization of long-range corrected hybrid density functionals, J. Chem. Phys., 128, 84106, 10.1063/1.2834918
Heyd, 2004, Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional, J. Chem. Phys., 121, 1187, 10.1063/1.1760074
Heyd, 2004, Assessment and validation of a screened Coulomb hybrid density functional, J. Chem. Phys., 120, 7274, 10.1063/1.1668634
Heyd, 2005, Energy band gaps and lattice parameters evaluated with the Heyd–Scuseria–Ernzerhof screened hybrid functional, J. Chem. Phys., 123, 174101, 10.1063/1.2085170
Heyd, 2006, Erratum: “Hybrid functionals based on a screened Coulomb potential”, J. Chem. Phys., 124, 219906, 10.1063/1.2204597
Izmaylov, 2006, Efficient evaluation of short-range Hartree–Fock exchange in large molecules and periodic systems, J. Chem. Phys., 125, 104103, 10.1063/1.2347713
Krukau, 2006, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys., 125, 224106, 10.1063/1.2404663
Henderson, 2009, Can short-range hybrids describe long-range-dependent properties?, J. Chem. Phys., 131, 44108, 10.1063/1.3185673
Ernzerhof, 1998, Generalized gradient approximation to the angle- and system-averaged exchange hole, J. Chem. Phys., 109, 3313, 10.1063/1.476928
Adamo, 1997, Toward reliable adiabatic connection models free from adjustable parameters, Chem. Phys. Lett., 274, 242, 10.1016/S0009-2614(97)00651-9
Pople, 1976, Theoretical models incorporating electron correlation, Int. J. Quantum Chem., 10, 1
Pople, 1977, Variational configuration interaction methods and comparison with perturbation theory, Int. J. Quantum Chem., 12, 149
Tawada, 2004, A long-range-corrected time-dependent density functional theory, J. Chem. Phys., 120, 8425, 10.1063/1.1688752
Vydrov, 2006, Importance of short-range versus long-range Hartree–Fock exchange for the performance of hybrid density functionals, J. Chem. Phys., 125, 74106, 10.1063/1.2244560
Vydrov, 2006, Assessment of a long-range corrected hybrid functional, J. Chem. Phys., 125, 234109, 10.1063/1.2409292
Vydrov, 2007, Tests of functionals for systems with fractional electron number, J. Chem. Phys., 126, 154109, 10.1063/1.2723119
Zheng, 2009, The DBH24/08 database and its use to assess electronic structure model chemistries for chemical reaction barrier heights, J. Chem. Theory Comput., 5, 808, 10.1021/ct800568m
Stewart, 2007, Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements, J. Mol. Model., 13, 1173, 10.1007/s00894-007-0233-4
Dewar, 1977, Ground states of molecules. 38. The MNDO method. Approximations and parameters, J. Am. Chem. Soc., 99, 4899, 10.1021/ja00457a004
Dewar, 1978, MNDO parameters for third period elements, J. Am. Chem. Soc., 100, 3607, 10.1021/ja00479a058
Dewar, 1985, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model, J. Am. Chem. Soc., 107, 3902, 10.1021/ja00299a024
Repasky, 2002, PDDG/PM3 and PDDG/MNDO: improved semiempirical methods, J. Comput. Chem., 23, 1601, 10.1002/jcc.10162
Tubert-Brohman, 2004, Extension of the PDDG/PM3 and PDDG/MNDO semiempirical molecular orbital methods to the halogens, J. Comput. Chem., 25, 138, 10.1002/jcc.10356
Tubert-Brohman, 2005, Extension of the PDDG/PM3 semiempirical molecular orbital method to sulfur, silicon, and phosphorus, J. Chem. Theory Comput., 1, 817, 10.1021/ct0500287
Tirado-Rives, 2008, Performance of B3LYP density functional methods for a large set of organic molecules, J. Chem. Theory Comput., 4, 297, 10.1021/ct700248k
Sattelmeyer, 2006, Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules, J. Phys. Chem. A, 110, 13551, 10.1021/jp064544k
Stewart, 1989, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem., 10, 209, 10.1002/jcc.540100208
Stewart, 1989, Optimization of parameters for semiempirical methods II. Applications, J. Comput. Chem., 10, 221, 10.1002/jcc.540100209
Swain, 1975, Aromatic hydrogen isotope effects in reactions of benzenediazonium salts, J. Am. Chem. Soc., 97, 791, 10.1021/ja00837a017
Evleth, 1971, Electronic structures of substituted aryl cations, J. Am. Chem. Soc., 93, 5636, 10.1021/ja00751a009
Gleiter, 1972, Zur stabilisierung des phenyl-kations, Chem. Ber., 105, 8, 10.1002/cber.19721050103
Dill, 1976, Molecular orbital theory of the electronic structure of molecules. 30. Structure and energy of the phenyl cation, J. Am. Chem. Soc., 98, 5428, 10.1021/ja00434a002
Klippenstein, 1997, Ab initio reaction path energetics for the CX dissociations of C6H5X+ with X=H, F, Cl, and Br, Int. J. Mass. Spectrom., 167/168, 235, 10.1016/S0168-1176(97)00080-3
Lazzaroni, 2008, Geometry and energy of substituted phenyl cations, J. Org. Chem., 73, 206, 10.1021/jo7020218
Jaffe, 1975, On the electronic structure of phenyl cation. A CNDO/S treatment, J. Org. Chem., 40, 3082, 10.1021/jo00909a015
Laali, 2002, DFT study of substituted and benzannelated aryl cations: substituent dependency of singlet/triplet ratio, J. Org. Chem., 67, 2913, 10.1021/jo020084p
Krauss, 1994, Excited states of the phenyl radical, J. Mol. Struct. (Theochem), 310, 155, 10.1016/S0166-1280(09)80093-6
Hrusak, 1997, The ground state (1A1) and the lowest triplet state (3B1) of the phenyl cation C6H5+ revisited, J. Chem. Phys., 106, 7541, 10.1063/1.473757
Harvey, 1998, The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces, Theor. Chem. Acc., 99, 95, 10.1007/s002140050309
Bernardi, 1988, Electronic structure of phenyl cation by MC SCF ab initio calculations, Chem. Phys. Lett., 153, 309, 10.1016/0009-2614(88)80146-5
Fujiwara, 1996, CH bond dissociation energies of polycyclic aromatic hydrocarbon molecular cations: theoretical interpretation of the (M-1)+ peak in the mass spectra, J. Mass. Spectrom., 31, 1216, 10.1002/(SICI)1096-9888(199611)31:11<1216::AID-JMS409>3.0.CO;2-M
Slegt, 2007, Photochemical generation and reactivity of naphthyl cations: cine substitution, Eur. J. Org. Chem., 32, 5353, 10.1002/ejoc.200700338
Du, 1993, Theoretical study of the electronic spectra of a polycyclic aromatic hydrocarbon, naphthalene, and its derivatives, Chem. Phys., 173, 421, 10.1016/0301-0104(93)80157-5