Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gleiter, H. in Mechanical Properties and Deformation Behavior of Materials Having Ultra-fine Microstructures (eds Nastasi, M., Parkin, D.M. & Gleiter, H.) 3–35 (Kluwer Academic, Netherlands, 1993).
Mayo, M.J. in Mechanical Properties and Deformation Behavior of Materials Having Ultra-fine Microstructures (eds Nastasi, M., Parkin, D.M.& Gleiter, H.) 361–380 (Kluwer Academic, Netherlands, 1993).
Mayo, M.J. in Nanostructured Materials (eds. Chow, G. M & Noskova, N.I.) 361–385 (Kluwer Academic, Netherlands, 1998).
Kuntz, J.D., Zhan, G.-D. & Mukherjee, A.K. Interim report to US army research office, Durham, North Carolina (April, 2002).
Niihara, K. New design concept of structural ceramic–ceramic nanocomposites. J. Ceram. Soc. Jpn 99, 974–982 (1991).
Ruoff, R.S. & Lorents, D.C. Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995).
Iijima, S., Brabec, Ch., Maiti, A. & Bernholc, Zj. Structural flexibility of carbon nanotubes. J. Phys. Chem. 104, 2089–2092 (1996).
Treacy, M.M.J., Ebbesen, T.W. & Gibson, J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996).
Falvo, M.R. et al. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997).
Subramooney, S. Nanocarbons—structure, properties, and potential applications. Adv. Mater. 15, 1157–1475 (1998).
Yu, M.-F., Files, B.S., Arepalli, S. & Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000).
Wager, H.D., Lourie, O., Feldman, Y. & Tenne, R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188–190 (1998).
Bower, B., Rosen, R., Jin, L., Han, J. & Zhou, O. Deformation of carbon nanotubes in nanotube–polymer composites. Appl. Phys. Lett. 74, 3317–3319 (1999).
Ajayan, P.M., Stephan, O., Colliex, C. & Trauth, D. Aligned carbon nanotubes arrays formed by cutting a polymer resin–nanotube composite. Science 265, 1212–1214 (1994).
Ajayan, P.M., Schadler, L.S., Giannaris, C. & Rubio, A. Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12, 750–753 (2000).
Xu, L. et al. Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37, 855–858 (1999).
Ma, R.Z., Wu, J., Wei, B.Q., Liang, J. & Wu, D.H. Processing and properties of carbon nanotubes–nano-SiC ceramic. J. Mater. Sci. 33, 5243–5246 (1998).
Flahaut, E. et al. Carbon nanotubes–metal–oxide nanocomposites: microstructure, electrical conductivity, and mechanical properties. Acta Mater. 48, 3803–3812 (2000).
Laurent, Ch., Peigney, A., Dumortier, O. & Rousset, A. Carbon nanotubes–Fe–alumina nanocomposites. Part II: Microstructure and mechanical properties of the hot-pressed composites. J. Euro. Ceram. Soc. 18, 2005–2013 (1998).
Peigney, A., Laurent, Ch., Dumortier, O. & Rousset, A. Carbon nanotubes–Fe–alumina nanocomposites. Part I: Influence of the Fe content on the synthesis of powders. J. Euro. Ceram. Soc. 18, 1995–2004 (1998).
Peigney, A., Laurent, Ch., Flahaut, E. & Rousset, A. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Inter. 26, 677–683 (2000).
Peigney, A., Laurent, Ch., Dobigeon, F. & Rousset, A. Carbon nanotubes grown in-situ by a novel catalytic method. J. Mater. Res. 12, 613–615 (1997).
Siegel, R.W. et al. Mechanical behavior of polymer and ceramic matrix nanocomposites. Scripta Mater. 44, 2061–64 (2001).
Dujardin, E., Ebbesen, T.W., Krishnan, A. & Treacy, M.J. Wetting of single shell carbon nanotubes. Adv. Mater. 10, 1472–1475 (1998).
Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).
Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A. & Smalley, R.E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. 19, 1800–1805 (2001).
Omori, M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. A 287, 183–88 (2000).