Single step chemical growth of ZnMgS nanorod thin film and its DFT study

Avinash S. Dive1, Ketan P. Gattu2, Nanasaheb P. Huse1, Devesh R. Upadhayay3, D.M. Phase4, Ramphal B. Sharma1,2
1Thin Film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
2Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
3SRM University, SRM Nagar, Kancheepuram District, Kattankulathur, Tamil Nadu 603 203, India
4UGC DAE Consortium for Scientific Research, Indore 452001, MP, India

Tài liệu tham khảo

Gu, 2008, Superlattices Microstruct., 44, 197, 10.1016/j.spmi.2008.06.002 Fan, 2015, ACS Appl. Mater. Interfaces, 7, 20600, 10.1021/acsami.5b04671 Ichino, 2000, J. Cryst. Growth, 214, 368, 10.1016/S0022-0248(00)00111-1 Sou, 2001, J. Cryst. Growth, 227, 705, 10.1016/S0022-0248(01)00806-5 Syrrokostas, 2016, Cryst. Growth Des., 16, 2140, 10.1021/acs.cgd.5b01812 Yu, 2012, Nano Energy, 1, 57, 10.1016/j.nanoen.2011.10.002 Niu, 2013, Phys. Rev. Lett., 110, 136102, 10.1103/PhysRevLett.110.136102 Dive, 2017, AIP Conf. Proc., 1832, 120007, 10.1063/1.4980692 Kumar, 2016, J. Electron. Mater., 45, 5606, 10.1007/s11664-016-4768-y Gautam, 2016, Superlattices Microstruct., 93, 101, 10.1016/j.spmi.2016.03.001 Chen, 2012, J. Nanomater., 2012, 1 Ghosh, 2006, Appl. Surf. Sci., 253, 1544, 10.1016/j.apsusc.2006.02.037 Dehghan Banadaki, 2014, J. Nanomater., 2014, 1, 10.1155/2014/985948 Khan, 2012, J. Appl. Phys., 112 Wei, 2011, Appl. Phys. Lett., 98, 261913, 10.1063/1.3604782 Othman, 2016, Vib. Spectrosc. Lai, 2012, AIP Adv., 2, 012149, 10.1063/1.3690124 Kumar, 2012, Curr. Appl. Phys., 12, 1166, 10.1016/j.cap.2012.02.042 Morhain, 2005, Superlattices Microstruct., 38, 455, 10.1016/j.spmi.2005.08.055 Liang, 2008, J. Cryst. Growth, 310, 1847, 10.1016/j.jcrysgro.2007.11.158 Chetri, 2013, J. Appl. Phys., 113, 233514, 10.1063/1.4811374 Chetri, 2015, J. Alloys Compd., 627, 261, 10.1016/j.jallcom.2014.11.204 Chetri, 2014, J. Mater. Sci. Farhat, 2015, Appl. Phys. A, 119, 1197, 10.1007/s00339-015-9177-1 Huang, 2012, Appl. Surf. Sci., 258, 3710, 10.1016/j.apsusc.2011.12.011 Huse, 2017, Mater. Sci. Semicond. Process., 67, 62, 10.1016/j.mssp.2017.05.010 Baghdad, 2017, Superlattices Microstruct., 104, 553, 10.1016/j.spmi.2016.11.069 Mohanty, 2013, Thin Solid Films, 527, 147, 10.1016/j.tsf.2012.11.034 Vasanthi, 2017, Superlattices Microstruct., 106, 174, 10.1016/j.spmi.2017.03.050 Bedia, 2017, Superlattices Microstruct. Desale, 2012, Composites Part B, 43, 1095, 10.1016/j.compositesb.2011.11.001 Chen, 2012, Mater. Sci. Eng. B, 177, 337, 10.1016/j.mseb.2011.12.028 Kılınç, 2010, Cryst. Res. Technol., 45, 529, 10.1002/crat.200900662 Mwankemwa, 2017, Superlattices Microstruct., 107, 163, 10.1016/j.spmi.2017.04.018 Khan, 2012, Comput. Mater. Sci, 61, 278, 10.1016/j.commatsci.2012.04.036 Djelal, 2017, Superlattices Microstruct. Ullah, 2014, Mater. Sci. Semicond. Process., 26, 681, 10.1016/j.mssp.2014.09.016 Yu, 2014, Chin. Phys. B, 23, 107102, 10.1088/1674-1056/23/10/107102 Zhang, 2014, Appl. Mech. Mater., 556–562, 177 Feigl, 2011, Mol. Simul., 37, 321, 10.1080/08927022.2011.553227