Single source impacts estimated with photochemical model source sensitivity and apportionment approaches
Tài liệu tham khảo
Baker, 2011, A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM2.5, Atmos. Environ., 45, 3758, 10.1016/j.atmosenv.2011.03.074
Baker, 2014, Photochemical grid model performance with varying horizontal grid resolution and sub-grid plume treatment for the Martins Creek near-field SO2 study, Atmos. Environ., 10.1016/j.atmosenv.2014.09.064
Baker, 2013, Evaluation of surface and upper air fine scale WRF meteorological modeling of the May and June 2010 CalNex period in California, Atmos. Environ., 80, 299, 10.1016/j.atmosenv.2013.08.006
Bergin, 2008, Single-source impact analysis using three-dimensional air quality models, J. Air Waste Manage. Assoc., 58, 1351, 10.3155/1047-3289.58.10.1351
Byun, 2006, Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51, 10.1115/1.2128636
Carlton, 2011, Photochemical modeling of the Ozark isoprene volcano: MEGAN, BEIS, and their impacts on air quality predictions, Environ. Sci. Technol., 45, 4438, 10.1021/es200050x
Carlton, 2010, Treatment of secondary organic aerosol in CMAQv4.7, Environ. Sci. Technol., 44, 8553, 10.1021/es100636q
Cimorelli, 2005, AERMOD: a dispersion model for industrial source applications. Part I: general model formulation and boundary layer characterization, J. Appl. Meteorol., 44, 682, 10.1175/JAM2227.1
Dunker, 2002, Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model, Environ. Sci. Technol., 36, 2953, 10.1021/es011418f
Dunker, 2002, The decoupled direct method for sensitivity analysis in a three-dimensional air quality model – implementation, accuracy, and efficiency, Environ. Sci. Technol., 36, 2965, 10.1021/es0112691
ENVIRON, 2012
ENVIRON, 2013
Fountoukis, 2007, ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–Nh(4)(+)–Na+–SO42–NO3–Cl–H2O aerosols, Atmos. Chem. Phys., 7, 4639, 10.5194/acp-7-4639-2007
Hakami, 2003, High-order, direct sensitivity analysis of multidimensional air quality models, Environ. Sci. Technol., 37, 2442, 10.1021/es020677h
Henderson, 2010, The influence of model resolution on ozone in industrial volatile organic compound plumes, J. Air Waste Manage. Assoc., 60, 1105, 10.3155/1047-3289.60.9.1105
Henderson, 2011, Comparison of Lagrangian process analysis tools for Eulerian air quality models, Atmos. Environ., 45, 5200, 10.1016/j.atmosenv.2011.06.005
Imhoff, 2001, NOy removal from the Cumberland power plant plume, Atmos. Environ., 35, 179, 10.1016/S1352-2310(00)00272-7
Karamchandani, 2011, Sub-grid scale plume modeling, Atmosphere, 2, 389, 10.3390/atmos2030389
Kwok, 2013, Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model, Atmos. Environ., 80, 398, 10.1016/j.atmosenv.2013.08.017
Luria, 2001, Rates of conversion of sulfur dioxide to sulfate in a scrubbed power plant plume, J. Air Waste Manage. Assoc., 51, 1408, 10.1080/10473289.2001.10464368
Luria, 2003, Ozone yields and production efficiencies in a large power plant plume, Atmos. Environ., 37, 3593, 10.1016/S1352-2310(03)00342-X
Napelenok, 2006, Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM), Atmos. Environ., 40, 6112, 10.1016/j.atmosenv.2006.05.039
Napelenok, 2008, Extension and evaluation of sensitivity analysis capabilities in a photochemical model, Environ. Model. Softw., 23, 994, 10.1016/j.envsoft.2007.11.004
Pierce, 1998, Influence of increased isoprene emissions on regional ozone modeling, J. Geophys. Res. Atmos. (1984–2012), 103, 25611, 10.1029/98JD01804
Pleim, 2007, A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing, J. Appl. Meteorol. Climatol., 46
Sarwar, 2011, Impact of a new condensed toluene mechanism on air quality model predictions in the US, Geosci. Model Dev., 4, 183, 10.5194/gmd-4-183-2011
Sarwar, 2013, Potential impacts of two SO2 oxidation pathways on regional sulfate concentrations: aqueous-phase oxidation by NO2 and gas-phase oxidation by stabilized Criegee intermediates, Atmos. Environ., 68, 186, 10.1016/j.atmosenv.2012.11.036
Simon, 2012, Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012, Atmos. Environ., 61, 124, 10.1016/j.atmosenv.2012.07.012
Skamarock, 2008
U.S. Environmental Protection Agency, 2005
U.S. Environmental Protection Agency, 2014
Wagstrom, 2008, Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model, Atmos. Environ., 42, 5650, 10.1016/j.atmosenv.2008.03.012
Walcek, 1986, A theoretical method for computing vertical distributions of acidity and sulfate production within cumulus clouds, J. Atmos. Sci., 43, 339, 10.1175/1520-0469(1986)043<0339:ATMFCV>2.0.CO;2
Wang, 2009, Development of a tagged species source apportionment algorithm to characterize three-dimensional transport and transformation of precursors and secondary pollutants, J. Geophys. Res.-Atmos., 114, 10.1029/2008JD010846
Zhou, 2012, Observation and modeling of the evolution of Texas power plant plumes, Atmos. Chem. Phys., 12, 455, 10.5194/acp-12-455-2012