Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses
Tóm tắt
Từ khóa
Tài liệu tham khảo
Voswinckel H, Bambach M, Hirt G (2015) Improving geometrical accuracy for flanging by incremental sheet metal forming. Int J Mater Form 8(3):391–399. https://doi.org/10.1007/s12289-014-1182-y
Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114
Duflou JR, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken AM (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann Technol 57(1):253–256
Lu B, Ou H, Shi SQ, Long H, Chen J (2016) Titanium based cranial reconstruction using incremental sheet forming. Int J Mater Form 9(3):361–370. https://doi.org/10.1007/s12289-014-1205-8
Bahloul R, Arfa H, Belhadjsalah H (2014) A study on optimal design of process parameters in single point incremental forming of sheet metal by combining box-Behnken design of experiments, response surface methods and genetic algorithms. Int J Adv Manuf Technol 74(1-4):163–185. https://doi.org/10.1007/s00170-014-5975-4
Isik K, Silva MB, Tekkaya AE, Martins PAF (2014) Formability limits by fracture in sheet metal forming. J Mater Process Technol 214(8):1557–1565. https://doi.org/10.1016/j.jmatprotec.2014.02.026
Martins PAF, Bay N, Tekkaya AE, Atkins AG (2014) Characterization of fracture loci in metal forming. Int J Mech Sci 83:112–123. https://doi.org/10.1016/j.ijmecsci.2014.04.003
Habibi N, Zarei-hanzaki A, Abedi H (2015) Journal of materials processing technology an investigation into the fracture mechanisms of twinning-induced-plasticity steel sheets under various strain paths. J Mater Process Technol 224:102–116. https://doi.org/10.1016/j.jmatprotec.2015.04.014
Abedini A, Butcher C, Worswick MJ (2017) Fracture characterization of rolled sheet alloys in shear loading: studies of specimen geometry, anisotropy, and rate sensitivity. Exp Mech 57(1):75–88. https://doi.org/10.1007/s11340-016-0211-9
Bai Y, Wierzbicki T (2015) A comparative study of three groups of ductile fracture loci in the 3D space. Eng Fract Mech 135:147–167. https://doi.org/10.1016/j.engfracmech.2014.12.023
Park N, Huh H, Lim SJ, Lou Y, Kang YS, Seo MH (2017) Fracture-based forming limit criteria for anisotropic materials in sheet metal forming. Int J Plast 96:1–35. https://doi.org/10.1016/j.ijplas.2016.04.014
McAnulty T, Jeswiet J, Doolan M (2017) Formability in single point incremental forming: a comparative analysis of the state of the art. CIRP J Manuf Sci Technol 16:43–54. https://doi.org/10.1016/j.cirpj.2016.07.003
Fiorentino A, Marzi R, Ceretti E (2012) Preliminary results on Ti incremental sheet forming (ISF) of biomedical devices: biocompatibility, surface finishing and treatment. International Journal of Mechatronics and Manufacturing Systems 5(1):36–45. https://doi.org/10.1504/IJMMS.2012.046146
Feng JW, Zhan LH, Yang YG (2016) The establishment of surface roughness as failure criterion of Al–Li alloy stretch-forming process. Metals 6(1):13. https://doi.org/10.3390/met6010013
Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A 193(1033):281–297. https://doi.org/10.1098/rspa.1948.0045
Basak S, Panda SK (2016) Application of Barlat Yld-96 Yield Criterion for Predicting Formability of Pre-Strained Dual Phase Steel Sheets. In: ASME 2016 11th International Manufacturing Science and Engineering Conference. p V001T02A063--V001T02A063
Basak S, Panda SK, Zhou YN (2015) Formability assessment of Prestrained automotive grade steel sheets using stress based and polar effective plastic strain-forming limit diagram. J Eng Mater Technol 137(4):041006. https://doi.org/10.1115/1.4030786
Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and lode dependence. Int J Plast 24(6):1071–1096. https://doi.org/10.1016/j.ijplas.2007.09.004
Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
Lee YW (2005) Fracture prediction in metal sheets (PhD thesis). Massachusetts Institute Of Technology, Cambridge, United States
Considere A (1885) Use of the iron and steel in buildings. Ann Des Ponts Chaussees 9:574–575
Gorji M, Berisha B, Hora P, Barlat F (2015) Modeling of localization and fracture phenomena in strain and stress space for sheet metal forming. Int J Mater Form. https://doi.org/10.1007/s12289-015-1242-y
Silva MB, Nielsen PS, Bay N, Martins PAF (2011) Failure mechanisms in single-point incremental forming of metals. Int J Adv Manuf Technol 56(9-12):893–903. https://doi.org/10.1007/s00170-011-3254-1
Freudenthal AM (1950) The inelastic behavior of solids. Wiley, New York
Clift SE, Hartley P, Sturgess CEN, Rowe GW (1990) Fracture prediction in plastic deformation processes. Int J Mech Sci 32(1):1–17. https://doi.org/10.1016/0020-7403(90)90148-C
Cockcroft MG, Latham DJ (1968) Ductility and the workability of metals. J Inst Met 96:33–39
Tarigopula V, Hopperstad OS, Langseth M, Clausen AH, Hild F, Lademo OG, Eriksson M (2008) A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech 48(2):181–196. https://doi.org/10.1007/s11340-007-9066-4
Oh SI, Chen CC, Kobayashi S (1979) Ductile fracture in axisymmetric extrusion and drawing-part 2: workability in extrusion and drawing. Journal of Engineering for Industry 101(1):36–44. https://doi.org/10.1115/1.3439471
Brozzo P, Deluca B, Rendina R (1972) A new method for the prediction of formability in metal sheets, sheet material forming and formability. In: Proceedings of the Seventh Biennial Conference of the IDDRG
Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields∗. J Mech Phys Solids 17(3):201–217. https://doi.org/10.1016/0022-5096(69)90033-7
Nakazima K, Kikuma T, Hasuka K (1968) Study on the formability of steel sheets. Yawata Tech Rep 264:8517–8530
Basak S, Panda SK (2018) Implementation of Yld96 anisotropy plasticity theory for estimation of polar effective plastic strain based failure limit of pre-strained thin steels. Thin-Walled Struct 126:26–37
Dhara S, Basak S, Panda SK, Hazra S, Shollock B, Dashwood R (2016) Formability analysis of pre-strained AA5754-O sheet metal using Yld96 plasticity theory: role of amount and direction of uni-axial pre-strain. J Manuf Process 24:270–282. https://doi.org/10.1016/j.jmapro.2016.09.014
Prasad KS, Panda SK, Kar SK et al (2017) Microstructures, forming limit and failure analyses of Inconel 718 sheets for fabrication of aerospace components. J Mater Eng Perform 26(4):1513–1530
Panicker SS, Prasad KS, Basak S, Panda SK (2017) Constitutive behavior and deep Drawability of three aluminum alloys under different temperatures and deformation speeds. J Mater Eng Perform 26(8):3954–3969
Prasad KS, Gupta AK, Singh Y, Singh SK (2016) A modified mechanical threshold stress constitutive model for austenitic stainless steels. J Mater Eng Perform. https://doi.org/10.1007/s11665-016-2389-5
Gatea S, Ou H, McCartney G (2016) Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol 87(1-4):479–499. https://doi.org/10.1007/s00170-016-8426-6
Emmens WC, Sebastiani G, van den Boogaard AH (2010) The technology of incremental sheet forming-a brief review of the history. J Mater Process Technol 210(8):981–997. https://doi.org/10.1016/j.jmatprotec.2010.02.014
Behera AK, de Sousa RA, Ingarao G, Oleksik V (2017) Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. J Manuf Process 27:37–62
Silva MB, Skjoedt M, Atkins a G et al (2008) Single-point incremental forming and formability–failure diagrams. J Strain Anal Eng Des 43(1):15–35. https://doi.org/10.1243/03093247JSA340
Madeira T, Silva CMA, Silva MB, Martins PAF (2015) Failure in single point incremental forming. Int J Adv Manuf Technol 80(9-12):1471–1479. https://doi.org/10.1007/s00170-014-6381-7
Hagan E, Jeswiet J (2004) Analysis of surface roughness for parts formed by computer numerical controlled incremental forming. Proc Inst Mech Eng B J Eng Manuf 218(10):1307–1312
Hamilton K, Jeswiet J (2010) Single point incremental forming at high feed rates and rotational speeds: surface and structural consequences. CIRP Ann Manuf Technol 59(1):311–314. https://doi.org/10.1016/j.cirp.2010.03.016
Durante M, Formisano A, Langella A (2010) Comparison between analytical and experimental roughness values of components created by incremental forming. J Mater Process Technol 210(14):1934–1941
Bennett JM (1992) Recent developments in surface roughness characterization. Meas Sci Technol 3(12):1119
Prasad KS, Panda SK, Kar SK, Murty SVSN, Sharma SC (2018) Effect of solution treatment on deep drawability of IN718 sheets: experimental analysis and metallurgical characterization. Mater Sci Eng A 727:97–112. https://doi.org/10.1016/j.msea.2018.04.110
Masoumi M, Santos LPM, Bastos IN, Tavares SSM, da Silva MJG, de Abreu HFG (2016) Texture and grain boundary study in high strength Fe-18Ni-co steel related to hydrogen embrittlement. Mater Des 91:90–97. https://doi.org/10.1016/j.matdes.2015.11.093
Goel S, Jayaganthan R, Singh IV, Srivastava D, Dey GK, Saibaba N (2015) Texture evolution and ultrafine grain formation in cross-cryo-rolled zircaloy-2. Acta Metallurgica Sinica (English Letters) 28(7):837–846. https://doi.org/10.1007/s40195-015-0267-z
Weibel ER (1989) Measuring through the microscope: development and evolution of stereological methods. J Microsc 155(3):393–403
Osakada K, Oyane M (1971) On the roughening of free surface in deformation processes. Bulletin of JSME 14(68):171–177
Dai K, Villegas J, Shaw L (2005) An analytical model of the surface roughness of an aluminum alloy treated with a surface nanocrystallization and hardening process. Scr Mater 52(4):259–263. https://doi.org/10.1016/j.scriptamat.2004.10.021
Savoie J, Zhou Y, Jonas JJ, Macewen SR (1996) Textures induced by tension and deep drawing in aluminum sheets. Acta Mater 44(2):587–605. https://doi.org/10.1016/1359-6454(95)00214-6