Single oil drop breakage in water: Impact of turbulence level in channel flow

Chemical Engineering Science: X - Tập 12 - Trang 100111 - 2021
Eirik H. Herø1, Nicolas La Forgia1, Jannike Solsvik1, Hugo A. Jakobsen1
1Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælandsvei 4, Kjemiblokk 5, 7491 Trondheim, Norway

Tài liệu tham khảo

Alopaeus, 2002, Simulation of the population balances for liquid–liquid systems in a nonideal stirred tank. Part 2—parameter fitting and the use of the multiblock model for dense dispersions, Chem. Eng. Sci., 57, 1815, 10.1016/S0009-2509(02)00067-2 Andersson, 2006, On the breakup of fluid particles in turbulent flows, AIChE J., 52, 2020, 10.1002/aic.10831 Andersson, 2014, Computational fluid dynamics simulation of fluid particle fragmentation in turbulent flows, Appl. Math. Model., 38, 4186, 10.1016/j.apm.2014.01.005 Ashar, 2018, Single droplet breakup in a rotor-stator mixer, Chem. Eng. Sci., 181, 186, 10.1016/j.ces.2018.02.021 Batchelor, 1951, Pressure fluctuations in isotropic turbulence, Math. Proc. Cambridge Philos. Soc., 47, 359, 10.1017/S0305004100026712 Calabrese, 1986, Drop breakup in turbulent stirred-tank contactors. Part I: Effect of dispersed-phase viscosity, AIChE J., 32, 657, 10.1002/aic.690320416 Chen, 1998, A population balance model for disperse systems, Chem. Eng. Sci., 53, 1059, 10.1016/S0009-2509(97)00328-X Coulaloglou, 1977, Description of interaction processes in agitated liquid-liquid dispersions, Chem. Eng. Sci., 32, 1289, 10.1016/0009-2509(77)85023-9 Davidson, 2004 Diemer, 2002, A moment methodology for coagulation and breakage problems: Part 3—generalized daughter distribution functions, Chem. Eng. Sci., 57, 4187, 10.1016/S0009-2509(02)00366-4 Foroushan, 2020, On the dynamics of fluid particle breakage induced by hydrodynamic instabilities: A review of modelling approaches, Chem. Eng. Sci., 219, 115575, 10.1016/j.ces.2020.115575 Galinat, 2005, Drop break-up in turbulent pipe flow downstream of a restriction, Chem. Eng. Sci., 60, 6511, 10.1016/j.ces.2005.05.012 Galinat, 2007, Breakup of a drop in a liquid-liquid pipe flow through an orifice, AIChE J., 53, 56, 10.1002/aic.11055 Håkansson, 2020, On the validity of different methods to estimate breakup frequency from single drop experiments, Chem. Eng. Sci., 227, 115908, 10.1016/j.ces.2020.115908 Håkansson, 2009, Dynamic simulation of emulsion formation in a high pressure homogenizer, Chem. Eng. Sci., 64, 2915, 10.1016/j.ces.2009.03.034 Han, 2011, A theoretical model for droplet breakup in turbulent dispersions, Chem. Eng. Sci., 66, 766, 10.1016/j.ces.2010.11.041 Han, 2013, A novel theoretical model of breakage rate and daughter size distribution for droplet in turbulent flows, Chem. Eng. Sci., 102, 186, 10.1016/j.ces.2013.06.046 Han, 2015, Consideration of low viscous droplet breakage in the framework of the wide energy spectrum and the multiple fragments, AIChE J., 61, 2147, 10.1002/aic.14830 Herø, 2019, Determination of Breakage Parameters in Turbulent Fluid-Fluid Breakage, Chem. Eng. Technol., 42, 903, 10.1002/ceat.201800610 Herø, 2020, Single Drop Breakage in Turbulent Flow: Statistical Data Analysis, Chem. Eng. Sci. X, 100082 Hinze, 1955, Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes, AIChE J., 1, 289, 10.1002/aic.690010303 Hsia, 1983, Simulation analysis of drop breakage, coalescence and micromixing in liquid-liquid stirred tanks, Chem. Eng. J., 26, 189, 10.1016/0300-9467(83)80014-8 Jakobsen, 2014 Karimi, 2019, Dual mechanism model for fluid particle breakup in the entire turbulent spectrum, AIChE J., e16600, 10.1002/aic.16600 La Forgia, 2018, Dissipation rate estimation in a rectangular shaped test section with periodic structure at the walls, Chem. Eng. Sci., 195, 159, 10.1016/j.ces.2018.11.039 Lasheras, 2002, A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow, Int. J. Multiph. Flow, 28, 247, 10.1016/S0301-9322(01)00046-5 Lehr, 2002, Bubble-Size distributions and flow fields in bubble columns, AIChE J., 48, 2426, 10.1002/aic.690481103 Liao, 2009, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci., 64, 3389, 10.1016/j.ces.2009.04.026 Luo, 1996, Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions, AIChE J., 42, 1225, 10.1002/aic.690420505 Maaß, 2012, Determination of breakage rates using single drop experiments, Chem. Eng. Sci., 70, 146, 10.1016/j.ces.2011.08.027 Maaß, 2007, Experimental investigations and modelling of breakage phenomena in stirred liquid/liquid systems, Chem. Eng. Res. Des., 85, 703, 10.1205/cherd06187 Maaß, 2011, Analysis of particle strain in stirred bioreactors by drop breakage investigations, Biotechnol. J., 6, 979, 10.1002/biot.201100161 Martínez-Bazán, 1999, On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency, J. Fluid Mech., 401 Martínez-Bazán, 1999, On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles, J. Fluid Mech., 401 Martínez-Bazán, 2010, Considerations on bubble fragmentation models, J. Fluid Mech., 661, 159, 10.1017/S0022112010003186 Nachtigall, 2016, Analysis of drop deformation dynamics in turbulent flow, Chin. J. Chem. Eng., 24, 264, 10.1016/j.cjche.2015.06.003 Narsimhan, 1979, A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions, Chem. Eng. Sci., 34, 257, 10.1016/0009-2509(79)87013-X Pope, 2000 Ramkrishna, 2000 Shinnar, 1961, On the behaviour of liquid dispersions in mixing vessels, J. Fluid Mech., 10, 259, 10.1017/S0022112061000214 Solsvik, 2017, Turbulence modeling in the wide energy spectrum: Explicit formulas for Reynolds number dependent energy spectrum parameters, Eur. J. Mech. B. Fluids, 61, 170, 10.1016/j.euromechflu.2016.10.011 Solsvik, 2015, Single drop breakup experiments in stirred liquid-liquid tank, Chem. Eng. Sci., 131, 219, 10.1016/j.ces.2015.03.059 Solsvik, 2016, A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence, AIChE J., 62, 1795, 10.1002/aic.15128 Solsvik, 2016, Development of Fluid Particle Breakup and Coalescence Closure Models for the Complete Energy Spectrum of Isotropic Turbulence, Ind. Eng. Chem. Res., 55, 1449, 10.1021/acs.iecr.5b04077 Solsvik, 2013, On the constitutive equations for fluid particle breakage, Rev. Chem. Eng., 29, 241, 10.1515/revce-2013-0009 Solsvik, 2016, A theoretical study on drop breakup modeling in turbulent flows: The inertial subrange versus the entire spectrum of isotropic turbulence, Chem. Eng. Sci., 149, 249, 10.1016/j.ces.2016.04.037 Solsvik, 2016, Definition of the Single Drop Breakup Event, Ind. Eng. Chem. Res., 55, 2872, 10.1021/acs.iecr.6b00591 Tomiyama, 2002, Terminal velocity of single bubbles in surface tension force dominant regime, Int. J. Multiph. Flow, 28, 1497, 10.1016/S0301-9322(02)00032-0 Vankova, 2007, Emulsification in turbulent flow: 2. Breakage rate constants, J. Colloid Interface Sci., 313, 612, 10.1016/j.jcis.2007.04.064 Vejražka, 2018, Experiments on breakup of bubbles in a turbulent flow, AIChE J., 64, 740, 10.1002/aic.15935 Walstra, P., Smulders, P.E., 1998. Emulsion formation. In: Binks, B.P., (Ed.), Modern Aspects of Emulsion Science. Royal Society of Chemistry, Cambridge, pp. 56–99 (Chapter 2). doi: 10.1039/9781847551474-00056. http://ebook.rsc.org/?DOI=10.1039/9781847551474-00056. Zaccone, 2007, Drop breakage in liquid–liquid stirred dispersions: Modelling of single drop breakage, Chem. Eng. Sci., 62, 6297, 10.1016/j.ces.2007.07.026