Single neuron electroporation in manipulating and measuring the central nervous system

Ti-Fei Yuan1, Manuel Menéndez-González2, Oscar Arias-Carrión3
1Neuroscience, NCI, Shanghai, China
2Unit of Neurology, Hospital Alvarez-Buylla, Mieres, Spain
3Experimental Neurology, Philipps University, Marburg, Germany

Tóm tắt

The development and application of single neuron electroporation largely advanced the use of traditional genetics in investigations of the central nervous system. This quick and accurate manipulation of the brain at individual neuron level allowed the gain and loss of functional analyses of different genes and/or proteins. This manuscript reviewed the development of the technique and discussed some technical aspects in practical manipulations. Then the manuscript summarized the potential applications with this technique. Last but not least, the technique showed prospective future when combined with other modern methods in neuroscience research.

Tài liệu tham khảo

Simoes S, Filipe A, Faneca H, Mano M, Penacho N, Duzgunes N, de Lima MP: Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2005, 2:237–254. Ferrer-Miralles N, Vazquez E, Villaverde A: Membrane-active peptides for non-viral gene therapy: making the safest easier. Trends Biotechnol 2008, 26:267–275. Heller LC, Ugen K, Heller R: Electroporation for targeted gene transfer. Expert Opin Drug Deliv 2005, 2:255–268. Favard C, Dean DS, Rols MP: Electrotransfer as a non viral method of gene delivery. Curr Gene Ther 2007, 7:67–77. Weaver JC, Chizmadzhev YA: Theory of electroporation: a review. Bioelectrochem Bioenerg 1996, 41:135–160. Neumann E, Kakorin S, Toensing K: Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 1999, 48:3–16. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH: Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982, 1:841–845. Wong TK, Neumann E: Electric field mediated gene transfer. Biochem Biophys Res Commun 1982, 107:584–587. Yuan TF: Electroporation: an arsenal of application. Cytotechnology 2007, 54:71–76. Nakamura H, Katahira T, Sato T, Watanabe Y, Funahashi J: Gain- and loss-of-function in chick embryos by electroporation. Mech Dev 2004, 121:1137–1143. Itasaki N, Bel-Vialar S, Krumlauf R: 'Shocking' developments in chick embryology: electroporation and in ovo gene expression. Nat Cell Biol 1999, 1:E203–207. Isaka Y, Imai E: Electroporation-mediated gene therapy. Expert Opin Drug Deliv 2007, 4:561–571. Wei F, Xia XM, Tang J, Ao H, Ko S, Liauw J, Qiu CS, Zhuo M: Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. J Neurosci 2003, 23:8402–8409. Teruel MN, Blanpied TA, Shen K, Augustine GJ, Meyer T: A versatile microporation technique for the transfection of cultured CNS neurons. J Neurosci Methods 1999, 93:37–48. Mertz KD, Weisheit G, Schilling K, Luers GH: Electroporation of primary neural cultures: a simple method for directed gene transfer in vitro. Histochem Cell Biol 2002, 118:501–506. Buchser WJ, Pardinas JR, Shi Y, Bixby JL, Lemmon VP: 96-well electroporation method for transfection of mammalian central neurons. Biotechniques 2006, 41:619–624. Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J: Microfluidic control of cell pairing and fusion. Nat Methods 2009, 6:147–152. Zeitelhofer M, Vessey JP, Xie Y, Tubing F, Thomas S, Kiebler M, Dahm R: High-efficiency transfection of mammalian neurons via nucleofection. Nat Protoc 2007, 2:1692–1704. Haas K, Sin WC, Javaherian A, Li Z, Cline HT: Single-cell electroporation for gene transfer in vivo. Neuron 2001, 29:583–591. Haas K, Jensen K, Sin WC, Foa L, Cline HT: Targeted electroporation in Xenopus tadpoles in vivo--from single cells to the entire brain. Differentiation 2002, 70:148–154. Rae JL, Levis RA: Single-cell electroporation. Pflugers Arch 2002, 443:664–670. Judkewitz B, Rizzi M, Kitamura K, Hausser M: Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 2009, 4:862–869. Hewapathirane DS, Haas K: Single cell electroporation in vivo within the intact developing brain. J Vis Exp 2008, 17:pii. 705 Lu VB, Williams DJ, Won YJ, Ikeda SR: Intranuclear microinjection of DNA into dissociated adult mammalian neurons. J Vis Exp 2009, 34:pii. 1614 Kitamura K, Judkewitz B, Kano M, Denk W, Hausser M: Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 2008, 5:61–67. Martinez CY, Hollenbeck PJ: Transfection of primary CNS and PNS neurons by electroporation. Methods in Cell Biology 2003, 71:321–332. Hara C, Tateyama K, Akamatsu N, Imabayashi H, Karaki K, Nomura N, Okano H, Miyawaki A: A practical device for pinpoint delivery of molecules into multiple neurons in culture. Brain Cell Biol 2006, 35:229–237. Li H, Chan ST, Tang F: Transfection of rat brain cells by electroporation. J Neurosci Methods 1997, 75:29–32. Zeitelhofer M, Vessey JP, Thomas S, Kiebler M, Dahm R: Transfection of cultured primary neurons via nucleofection. Curr Protoc Neurosci 2009., Chapter 4: Unit4 32 Chakrabarti R, Wylie DE, Schuster SM: Transfer of monoclonal antibodies into mammalian cells by electroporation. J Biol Chem 1989, 264:15494–15500. McNeil PL, Terasaki M: Coping with the inevitable: how cells repair a torn surface membrane. Nat Cell Biol 2001, 3:E124–129. Potter H: Application of electroporation in recombinant DNA technology. Methods Enzymol 1993, 217:461–478. Takahashi M, Nomura T, Osumi N: Transferring genes into cultured mammalian embryos by electroporation. Dev Growth Differ 2008, 50:485–497. Osumi N, Inoue T: Gene transfer into cultured mammalian embryos by electroporation. Methods 2001, 24:35–42. Bestman JE, Ewald RC, Chiu SL, Cline HT: In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat Protoc 2006, 1:1267–1272. Young P, Feng G: Labeling neurons in vivo for morphological and functional studies. Curr Opin Neurobiol 2004, 14:642–646. Huber D, Petreanu L, Ghitani N, Ranade S, Hromadka T, Mainen Z, Svoboda K: Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 2008, 451:61–64. Boudes M, Pieraut S, Valmier J, Carroll P, Scamps F: Single-cell electroporation of adult sensory neurons for gene screening with RNA interference mechanism. J Neurosci Methods 2008, 170:204–211. Schanuel SM, Bell KA, Henderson SC, McQuiston AR: Heterologous expression of the invertebrate FMRFamide-gated sodium channel as a mechanism to selectively activate mammalian neurons. Neuroscience 2008, 155:374–386. Tanaka M, Yanagawa Y, Hirashima N: Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures. J Neurosci Methods 2009, 178:80–86. Graham LJ, Del Abajo R, Gener T, Fernandez E: A method of combined single-cell electrophysiology and electroporation. J Neurosci Methods 2007, 160:69–74. Rathenberg J, Nevian T, Witzemann V: High-efficiency transfection of individual neurons using modified electrophysiology techniques. J Neurosci Methods 2003, 126:91–98. Nevian T, Helmchen F: Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch 2007, 454:675–688. Lang SB, Bonhoeffer T, Lohmann C: Simultaneous imaging of morphological plasticity and calcium dynamics in dendrites. Nat Protoc 2006, 1:1859–1864. Nagayama S, Zeng S, Xiong W, Fletcher ML, Masurkar AV, Davis DJ, Pieribone VA, Chen WR: In vivo simultaneous tracing and Ca(2+) imaging of local neuronal circuits. Neuron 2007, 53:789–803. Lovell P, Jezzini SH, Moroz LL: Electroporation of neurons and growth cones in Aplysia californica. J Neurosci Methods 2006, 151:114–120. Boutin C, Diestel S, Desoeuvre A, Tiveron MC, Cremer H: Efficient in vivo electroporation of the postnatal rodent forebrain. PLoS One 2008, 3:e1883. Chesler AT, Le Pichon CE, Brann JH, Araneda RC, Zou DJ, Firestein S: Selective gene expression by postnatal electroporation during olfactory interneuron nurogenesis. PLoS One 2008, 3:e1517. Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A: NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 2010, 65:859–872. Mamber C, Verhaagen J, Hol EM: In vivo targeting of subventricular zone astrocytes. Prog Neurobiol 2010, 92:19–32. Uesaka N, Hayano Y, Yamada A, Yamamoto N: Single cell electroporation method for mammalian CNS neurons in organotypic slice cultures. In Electroporation and Sonoporation in Developmental Biology. Volume 1. Edited by: Nakamura H. Springer Japan; 2009:169–177. Uesaka N, Nishiwaki M, Yamamoto N: Single cell electroporation method for axon tracing in cultured slices. Dev Growth Differ 2008, 50:475–477. Uesaka N, Hayano Y, Yamada A, Yamamoto N: Interplay between laminar specificity and activity-dependent mechanisms of thalamocortical axon branching. J Neurosci 2007, 27:5215–5223. Uesaka N, Hirai S, Maruyama T, Ruthazer ES, Yamamoto N: Activity dependence of cortical axon branch formation: a morphological and electrophysiological study using organotypic slice cultures. J Neurosci 2005, 25:1–9. Jung JC, Mehta AD, Aksay E, Stepnoski R, Schnitzer MJ: In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J Neurophysiol 2004, 92:3121–3133.