Single-molecule folding

Current Opinion in Structural Biology - Tập 13 - Trang 88-97 - 2003
Xiaowei Zhuang1, Matthias Rief2
1Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
2Lehrstuhl für angewandte Physik, Amalienstrasse 54, 80799 München, Germany

Tài liệu tham khảo

Baldwin, 1994, Protein folding. Matching speed and stability, Nature, 369, 183, 10.1038/369183a0 Onuchic, 1997, Theory of protein folding: the energy landscape perspective, Annu. Rev. Phys. Chem., 48, 545, 10.1146/annurev.physchem.48.1.545 Dill, 1997, From Levinthal to pathways to funnels, Nat. Struct. Biol., 4, 10, 10.1038/nsb0197-10 Thirumalai, 2001, Early events in RNA folding, Annu. Rev. Phys. Chem., 52, 751, 10.1146/annurev.physchem.52.1.751 Stryer, 1967, Energy transfer: a spectroscopic ruler, Proc. Natl. Acad. Sci. U.S.A., 58, 719, 10.1073/pnas.58.2.719 Selvin, 2000, The renaissance of fluorescence resonance energy transfer, Nat. Struct. Biol., 7, 730, 10.1038/78948 Clausen-Schaumann, 2000, Force spectroscopy with single bio-molecules, Curr. Opin. Chem. Biol., 4, 524, 10.1016/S1367-5931(00)00126-5 Xie, 1998, Optical studies of single molecules at room temperature, Annu. Rev. Phys. Chem., 49, 441, 10.1146/annurev.physchem.49.1.441 Nie, 1997, Optical detection of single molecules, Annu. Rev. Biophys. Biomol. Struct., 26, 567, 10.1146/annurev.biophys.26.1.567 Moerner, 1999, Illuminating single molecules in condensed matter, Science, 283, 1670, 10.1126/science.283.5408.1670 Ha, 1996, Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor, Proc. Natl. Acad. Sci. U.S.A., 93, 6264, 10.1073/pnas.93.13.6264 Schutz, 1998, Direct observation of ligand colocalization on individual receptor molecules, Biophys. J., 74, 2223, 10.1016/S0006-3495(98)77931-7 Deniz, 1999, Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Forster distance dependence and subpopulations, Proc. Natl. Acad. Sci. U.S.A., 96, 3670, 10.1073/pnas.96.7.3670 Ha, 1999, Ligand-induced conformational changes observed in single RNA molecules, Proc. Natl. Acad. Sci. U.S.A., 96, 9077, 10.1073/pnas.96.16.9077 Brasselet, 2000, Single-molecule fluorescence resonant energy transfer in calcium concentration dependent cameleon, J. Phys. Chem., 104, 3675, 10.1021/jp993954o Sako, 2000, Single-molecule imaging of EGFR signalling on the surface of living cells, Nat. Cell. Biol., 2, 168, 10.1038/35004044 Weiss, 2000, Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy, Nat. Struct. Biol., 7, 724, 10.1038/78941 Ha, 2001, Single-molecule fluorescence methods for the study of nucleic acids, Curr. Opin. Struct. Biol., 11, 287, 10.1016/S0959-440X(00)00204-9 Zhuang, 2000, A single-molecule study of RNA catalysis and folding, Science, 288, 2048, 10.1126/science.288.5473.2048 Russell, 2002, Exploring the folding landscape of a structured RNA, Proc. Natl. Acad. Sci. U.S.A., 99, 155, 10.1073/pnas.221593598 Zhuang, 2002, Correlating structural dynamics and function in single ribozyme molecules, Science, 296, 1473, 10.1126/science.1069013 Jia, 1999, Folding dynamics of single GCN-4 peptide by fluorescence resonance energy transfer confocal microscopy, Chem. Phys., 247, 69, 10.1016/S0301-0104(99)00127-5 Talaga, 2000, Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy, Proc. Natl. Acad. Sci. U.S.A., 97, 13021, 10.1073/pnas.97.24.13021 Deniz, 2000, Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2, Proc. Natl. Acad. Sci. U.S.A., 97, 5179, 10.1073/pnas.090104997 Schuler, 2002, Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy, Nature, 419, 743, 10.1038/nature01060 Kellermayer, 1997, Folding-unfolding transitions in single titin molecules characterized with laser tweezers, Science, 276, 1112, 10.1126/science.276.5315.1112 Tskhovrebova, 1997, Elasticity and unfolding of single molecules of the giant muscle protein titin, Nature, 387, 308, 10.1038/387308a0 Rief, 1997, Reversible unfolding of individual titin immunoglobulin domains by AFM, Science, 276, 1109, 10.1126/science.276.5315.1109 Bell, 1978, Models for the specific adhesion of cells to cells, Science, 200, 618, 10.1126/science.347575 Evans, 1997, Dynamic strength of molecular adhesion bonds, Biophys. J., 72, 1541, 10.1016/S0006-3495(97)78802-7 Heymann, 2000, Dynamic force spectroscopy of molecular adhesion bonds, Phys. Rev. Lett., 84, 6126, 10.1103/PhysRevLett.84.6126 Isralewitz, 2001, Steered molecular dynamics and mechanical functions of proteins, Curr. Opin. Struct. Biol., 11, 224, 10.1016/S0959-440X(00)00194-9 Marszalek, 1999, Mechanical unfolding intermediates in titin modules, Nature, 402, 100, 10.1038/47083 Li, 2000, Point mutations alter the mechanical stability of immunoglobulin modules, Nat. Struct. Biol., 7, 1117, 10.1038/81964 Carrion-Vazquez, 1999, Mechanical and chemical unfolding of a single protein: a comparison, Proc. Natl. Acad. Sci. U.S.A., 96, 3694, 10.1073/pnas.96.7.3694 Li, 2000, Atomic force microscopy reveals the mechanical design of a modular protein, Proc. Natl. Acad. Sci. U.S.A., 97, 6527, 10.1073/pnas.120048697 Brockwell, 2002, The effect of core destabilization on the mechanical resistance of i27, Biophys. J., 83, 458, 10.1016/S0006-3495(02)75182-5 Fowler, 2001, Mapping the folding pathway of an immunoglobulin domain: structural detail from Phi value analysis and movement of the transition state, Structure, 9, 355, 10.1016/S0969-2126(01)00596-2 Fowler, 2002, Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering, J. Mol. Biol., 322, 841, 10.1016/S0022-2836(02)00805-7 Best, 2002, A simple method for probing the mechanical unfolding pathway of proteins in detail, Proc. Natl. Acad. Sci. U.S.A., 99, 12143, 10.1073/pnas.192351899 Li, 2002, Reverse engineering of the giant muscle protein titin, Nature, 418, 998, 10.1038/nature00938 Rief, 1998, Elastically coupled two-level-systems as a model for biopolymer extensibility, Phys. Rev. Lett., 81, 4764, 10.1103/PhysRevLett.81.4764 Oberhauser, 1998, The molecular elasticity of the extracellular matrix protein tenascin, Nature, 393, 181, 10.1038/30270 Oberdorfer, 2000, Conformational analysis of native fibronectin by means of force spectroscopy, Langmuir, 16, 9955, 10.1021/la0008176 Oberhauser, 2002, The mechanical hierarchies of fibronectin observed with single-molecule AFM, J. Mol. Biol., 319, 433, 10.1016/S0022-2836(02)00306-6 Rief, 1999, Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles, J. Mol. Biol., 286, 553, 10.1006/jmbi.1998.2466 Lenne, 2000, States and transitions during forced unfolding of a single spectrin repeat, FEBS Lett., 476, 124, 10.1016/S0014-5793(00)01704-X Altmann, 2002, Pathways and intermediates in forced unfolding of spectrin repeats, Structure, 10, 1085, 10.1016/S0969-2126(02)00808-0 Yang, 2000, Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme, Proc. Natl. Acad. Sci. U.S.A., 97, 139, 10.1073/pnas.97.1.139 Best, 2001, Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation, Biophys. J., 81, 2344, 10.1016/S0006-3495(01)75881-X Oesterhelt, 2000, Unfolding pathways of individual bacteriorhodopsins, Science, 288, 143, 10.1126/science.288.5463.143 Müller, 2002, Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy, Biophys. J., 83, 3578, 10.1016/S0006-3495(02)75358-7 Liphardt, 2001, Reversible unfolding of single RNA molecules by mechanical force, Science, 292, 733, 10.1126/science.1058498 Liphardt, 2002, Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality, Science, 296, 1832, 10.1126/science.1071152 Smith, 1999, Molecular mechanistic origin of the toughness of natural adhesives fibres and composites, Nature, 399, 761, 10.1038/21607 Thompson, 2001, Bone indentation recovery time correlates with bond reforming time, Nature, 414, 773, 10.1038/414773a Schwaiger, 2002, The myosin coiled-coil is a truly elastic protein structure, Nat. Materials, 1, 232, 10.1038/nmat776