Single-crystal diamond refractive lens for focusing X-rays in two dimensions

Journal of Synchrotron Radiation - Tập 23 Số 1 - Trang 163-168 - 2016
Sergey Antipov1, Sergey V. Baryshev1, J. E. Butler1, Olga Antipova2, Z. Liu3, Stanislav Stoupin3
1Euclid Techlabs LLC, Solon, OH 44139, USA
2Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
3Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA

Tóm tắt

The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

Từ khóa


Tài liệu tham khảo

Alianelli, 2010, J. Appl. Phys., 108, 123107, 10.1063/1.3517060

Amann, 2012, Nat. Photon., 6, 693, 10.1038/nphoton.2012.180

Antipov, 2015, Diamond Relat. Mater., 54, 15, 10.1016/j.diamond.2014.10.013

Baryshev, 2012, Appl. Surf. Sci., 258, 6963, 10.1016/j.apsusc.2012.03.144

Berman, 1993, Nucl. Instrum. Methods Phys. Res. A, 329, 555, 10.1016/0168-9002(93)91291-T

David, 2011, Sci. Rep., 1, 57, 10.1038/srep00057

Fernandez, 1997, Nucl. Instrum. Methods Phys. Res. A, 400, 476, 10.1016/S0168-9002(97)01014-0

Freund, 1995, Opt. Eng., 34, 432, 10.1117/12.195195

Isakovic, 2009, J. Synchrotron Rad., 16, 8, 10.1107/S0909049508033736

Lengeler, 1999, J. Synchrotron Rad., 6, 1153, 10.1107/S0909049599009747

Lengeler, 1998, J. Appl. Phys., 84, 5855, 10.1063/1.368899

Medvedev, 2013, Phys. Rev. B, 88, 224304, 10.1103/PhysRevB.88.224304

Nöhammer, 2003, J. Synchrotron Rad., 10, 168, 10.1107/S0909049502019532

Polikarpov, 2014, J. Synchrotron Rad., 21, 484, 10.1107/S1600577514001003

Schropp, 2013, Sci. Rep., 3, 1633, 10.1038/srep01633

Shvyd'ko, 2011, Nat. Photon., 5, 539, 10.1038/nphoton.2011.197

Shvyd'ko, 2010, Nat. Phys., 6, 196, 10.1038/nphys1506

Snigirev, 1996, Nature London, 384, 49, 10.1038/384049a0

Stoupin, 2013, Diamond Relat. Mater., 33, 1, 10.1016/j.diamond.2012.12.009

Stoupin, 2014, J. Appl. Cryst., 47, 1329, 10.1107/S1600576714013028

Vaughan, 2011, J. Synchrotron Rad., 18, 125, 10.1107/S0909049510044365

Zhu, 2014, Rev. Sci. Instrum., 85, 063106, 10.1063/1.4880724

Zozulya, 2012, Opt. Express, 20, 18967, 10.1364/OE.20.018967