Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích đơn bào và phiên mã tiết lộ tế bào TAL trong bệnh thận tiểu đường
Tóm tắt
Bệnh thận tiểu đường là một vấn đề sức khỏe cộng đồng toàn cầu với sự sinh bệnh đa dạng, chủ yếu liên quan đến huyết áp cao. Sự kích hoạt quá mức của AT1R đã được liên kết chặt chẽ với sự khởi phát và tiến triển của huyết áp cao trong bệnh thận tiểu đường. Nghiên cứu này nhằm thực hiện phân tích tế bào đơn bào và phiên mã ở nhánh lên dày trong bệnh thận tiểu đường, bao gồm việc sàng lọc các dấu hiệu sinh học, giao tiếp tế bào và thâm nhập miễn dịch, nhằm xác định các dấu hiệu tiềm năng và các phương tiện hiệu quả để phòng ngừa và điều trị. Bằng cách sử dụng phân tích mạng đồng biểu hiện gen trọng số đa chiều, bộ điều chỉnh thu hẹp tuyệt đối nhỏ nhất và tuyển chọn, học máy, giải mã thần kinh, phân tích gần đúng- triệu thời gian, phân nhóm phân tích ma trận không âm, và phản ứng hóa học do protein hóa học monocyte gây ra, chúng tôi đã xác định được 7 dấu hiệu tế bào TAL tiềm năng cho bệnh thận tiểu đường và làm sáng tỏ quy trình điều hòa của protein hình thành xương qua tế bào biểu mô podocyte và tế bào podocyte. Nghiên cứu cũng nhấn mạnh vai trò của COBL, PPARGC1A, và THSD7A trong phân nhóm phân tích ma trận không âm và mối quan hệ của chúng với miễn dịch tế bào TAL trong bệnh thận tiểu đường. Những phát hiện của chúng tôi cung cấp những hiểu biết và hướng đi mới để quản lý bệnh thận tiểu đường, cuối cùng giảm bớt gánh nặng cho bệnh nhân và xã hội.
Từ khóa
#bệnh thận tiểu đường #tế bào TAL #phân tích đơn bào #miễn dịch tế bào #dấu hiệu sinh họcTài liệu tham khảo
Ahluwalia TS, Lindholm E, Groop L, Melander O (2011) Uromodulin gene variant is associated with type 2 diabetic nephropathy. J Hypertens 29(9):1731–1734. https://doi.org/10.1097/HJH.0b013e328349de25
An P-G, Wu W-J, Tang Y-F, Zhang J (2023) Single-cell RNA sequencing reveals the heterogeneity and microenvironment in one adenoid cystic carcinoma sample. Funct Integr Genomics 23(2):155. https://doi.org/10.1007/s10142-023-01082-4
Anitei M, Stange C, Parshina I, Baust T, Schenck A, Raposo G et al (2010) Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat Cell Biol 12(4):330–340. https://doi.org/10.1038/ncb2034
Audoly LP, Ruan X, Wagner VA, Goulet JL, Tilley SL, Koller BH et al (2001) Role of EP(2) and EP(3) PGE(2) receptors in control of murine renal hemodynamics. Am J Physiol Heart Circ Physiol 280(1):H327–H333. https://doi.org/10.1152/ajpheart.2001.280.1.H327
Bankir L, Figueres L, Prot-Bertoye C, Bouby N, Crambert G, Pratt JH et al (2020) Medullary and cortical thick ascending limb: similarities and differences. Am J Physiol Renal Physiol 318(2):F422–F442. https://doi.org/10.1152/ajprenal.00261.2019
Berry R, Harewood L, Pei L, Fisher M, Brownstein D, Ross A et al (2011) Esrrg functions in early branch generation of the ureteric bud and is essential for normal development of the renal papilla. Hum Mol Genet 20(5):917–926. https://doi.org/10.1093/hmg/ddq530
Bondy CA, Werner H, Roberts CT, LeRoith D (1990) Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol Endocrinol (Baltimore, Md) 4(9):1386–1398
Chin E, Bondy C (1992) Insulin-like growth factor system gene expression in the human kidney. J Clin Endocrinol Metab 75(3):962–968
De Silva K, Demmer RT, Jönsson D, Mousa A, Forbes A, Enticott J (2022) Highly perturbed genes and hub genes associated with type 2 diabetes in different tissues of adult humans: a bioinformatics analytic workflow. Funct Integr Genomics 22(5):1003–1029. https://doi.org/10.1007/s10142-022-00881-5
Eladari D, Hübner CA (2011) Novel mechanisms for NaCl reabsorption in the collecting duct. Curr Opin Nephrol Hypertens 20(5):506–511. https://doi.org/10.1097/MNH.0b013e3283486c4a
El-Arif G, Khazaal S, Farhat A, Harb J, Annweiler C, Wu Y et al (2022) Angiotensin II type I receptor (AT1R): the gate towards COVID-19-associated diseases. Molecules (Basel, Switzerland) 27(7):2048. https://doi.org/10.3390/molecules27072048
Esposito F, Gillis N, Del Buono N (2019) Orthogonal joint sparse NMF for microarray data analysis. J Math Biol 79(1):223–247. https://doi.org/10.1007/s00285-019-01355-2
Flyvbjerg A (2000) Putative pathophysiological role of growth factors and cytokines in experimental diabetic kidney disease. Diabetologia 43(10):1205–1223. https://doi.org/10.1007/s001250051515
Fornoni A, Rosenzweig SA, Lenz O, Rivera A, Striker GE, Elliot SJ (2006) Low insulin-like growth factor binding protein-2 expression is responsible for increased insulin receptor substrate-1 phosphorylation in mesangial cells from mice susceptible to glomerulosclerosis. Endocrinology 147(7):3547–3554
Giguère V (2008) Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 29(6):677–696
Grassi G, Mancia G, Nilsson PM (2016) Specific blood pressure targets for patients with diabetic nephropathy? Diabetes Care 39(Supplement_2):S228–S233. https://doi.org/10.2337/dcS15-3020
Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28(1):164–176. https://doi.org/10.2337/diacare.28.1.164
Gui H, Chen X, Ye L, Ma H (2023) Seven basement membrane-specific expressed genes are considered potential biomarkers for the diagnosis and treatment of diabetic nephropathy. Acta Diabetol 60(4):493–505. https://doi.org/10.1007/s00592-022-02027-2
Han H, Chen Y, Yang H, Cheng W, Zhang S, Liu Y et al (2022) Identification and verification of diagnostic biomarkers for glomerular injury in diabetic nephropathy based on machine learning algorithms. Front Endocrinol 13:876960. https://doi.org/10.3389/fendo.2022.876960
Han Y, Jin L, Wang L, Wei L, Tu C (2023) Identification of PDK4 as hub gene for diabetic nephropathy using co-expression network analysis. Kidney Blood Press Res. https://doi.org/10.1159/000531288.
Hassouneh R, Nasrallah R, Zimpelmann J, Gutsol A, Eckert D, Ghossein J et al (2016) PGE2 receptor EP3 inhibits water reabsorption and contributes to polyuria and kidney injury in a streptozotocin-induced mouse model of diabetes. Diabetologia 59(6):1318–1328. https://doi.org/10.1007/s00125-016-3916-5
Huang W, Wu K, Wu R, Chen Z, Zhai W, Zheng J (2020) Bioinformatic gene analysis for possible biomarkers and therapeutic targets of hypertension-related renal cell carcinoma. Transl Androl Urol 9(6):2675–2687. https://doi.org/10.21037/tau-20-817
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H et al. (2021) Inference and analysis of cell-cell communication using CellChat. Nat Commun 12(1): 1088, https://doi.org/10.1038/s41467-021-21246-9.
Kaplan E, Stone R, Hume PJ, Greene NP, Koronakis V (2020) Structure of CYRI-B (FAM49B), a key regulator of cellular actin assembly. Acta Crystallographica. Section D. Struct Biol 76(Pt 10):1015–1024. https://doi.org/10.1107/S2059798320010906
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K et al (2019) Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 16(12):1289–1296. https://doi.org/10.1038/s41592-019-0619-0
Kvalvaag A, Valvo S, Céspedes PF, Saliba DG, Kurz E, Korobchevskaya K et al (2023) Clathrin mediates both internalization and vesicular release of triggered T cell receptor at the immunological synapse. Proc Natl Acad Sci USA 120(6):e2211368120. https://doi.org/10.1073/pnas.2211368120
Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S et al (2019) mlr3: a modern object-oriented machine learning framework in R. J Open Source Softw 4(44):1903. https://doi.org/10.21105/joss.01903
Lindenbergh-Kortleve DJ, Rosato RR, van Neck JW, Nauta J, van Kleffens M, Groffen C et al (1997) Gene expression of the insulin-like growth factor system during mouse kidney development. Mol Cell Endocrinol 132(1–2):81–91. https://doi.org/10.1016/s0303-7207(97)00123-8
Lu K, Wang L, Fu Y, Li G, Zhang X, Cao M (2022) Bioinformatics analysis identifies immune-related gene signatures and subtypes in diabetic nephropathy. Front Endocrinol 13:1048139. https://doi.org/10.3389/fendo.2022.1048139
Momoniat T, Ilyas D, Bhandari S (2019) ACE inhibitors and ARBs: managing potassium and renal function. Cleve Clin J Med 86(9):601–607. https://doi.org/10.3949/ccjm.86a.18024
Morabito S, Reese F, Rahimzadeh N, et al. High dimensional co-expression networks enable discovery of transcriptomic drivers in complex biological systems. Functional & Integrative Genomics. [In Press]. https://doi.org/10.1007/s10142-022-00795-9
Peng Y-L, Zhang Y, Pang L, Dong Y-F, Li M-Y, Liao H et al (2023) Integrated analysis of single-cell RNA-Seq and bulk RNA-Seq combined with multiple machine learning identified a novel immune signature in diabetic nephropathy. Diabetes Metab Syndr Obes 16:1669–1684. https://doi.org/10.2147/DMSO.S413569
Petz M, Kozina D, Huber H, Siwiec T, Seipelt J, Sommergruber W et al (2007) The leader region of Laminin B1 mRNA confers cap-independent translation. Nucleic Acids Res 35(8):2473–2482. https://doi.org/10.1093/nar/gkm096
Petz M, Them NCC, Huber H, Mikulits W (2012) PDGF enhances IRES-mediated translation of Laminin B1 by cytoplasmic accumulation of La during epithelial to mesenchymal transition. Nucleic Acids Res 40(19):9738–9749. https://doi.org/10.1093/nar/gks760
Polidoro JZ, Rebouças NA, Girardi ACC (2021) The angiotensin II type 1 receptor-associated protein attenuates angiotensin II-mediated inhibition of the renal outer medullary potassium channel in collecting duct cells. Front Physiol 12. https://doi.org/10.3389/fphys.2021.642409
Prudente S, Di Paola R, Copetti M, Lucchesi D, Lamacchia O, Pezzilli S et al (2017) The rs12917707 polymorphism at the UMOD locus and glomerular filtration rate in individuals with type 2 diabetes: evidence of heterogeneity across two different European populations. Nephrol Dial Transplant 32(10):1718–1722. https://doi.org/10.1093/ndt/gfw262
Qi J, Han W, Zhong N, Gou Q, Sun C (2022) Integrated analysis of miRNA-mRNA regulatory network and functional verification of miR-338-3p in coronary heart disease. Funct Integr Genomics 23(1):16. https://doi.org/10.1007/s10142-022-00941-w
Qin M, Zhang T (2023) Danggui Shaoyaosan attenuates doxorubicin induced nephrotic syndrome through regulating on PI3K/Akt pathway. Funct Integr Genomics 23(2):148. https://doi.org/10.1007/s10142-023-01071-7
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA et al (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14(10):979–982. https://doi.org/10.1038/nmeth.4402
Rodwell GEJ, Sonu R, Zahn JM, Lund J, Wilhelmy J, Wang L et al (2004) A transcriptional profile of aging in the human kidney. PLoS Biol 2(12):e427. https://doi.org/10.1371/journal.pbio.0020427
Shan E, Yu Y, Tang W, Wang W, Wang X, Zhou S et al (2023) miR-330-3p alleviates the progression of atherosclerosis by downregulating AQP9. Funct Integr Genom 23(2):77. https://doi.org/10.1007/s10142-023-01001-7
Shen Q, He B, Lu N, Conradt B, Grant BD, Zhou Z (2013) Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C elegans. Development (Cambridge, England) 140(15):3230–3243. https://doi.org/10.1242/dev.093732
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc, B: Stat 58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
Tong J, Meng X, Lv Q, Yuan H, Li W, Xiao W et al (2021) The downregulation of prognosis- and immune infiltration-related gene CYFIP2 serves as a novel target in ccRCC. Int J Gen Med 14:6587–6599. https://doi.org/10.2147/IJGM.S335713
Van Beusecum JP, Inscho EW (2015) Regulation of renal function and blood pressure control by P2 purinoceptors in the kidney. Curr Opin Pharmacol 21:82–88. https://doi.org/10.1016/j.coph.2015.01.003
Van Buren PN, Toto R (2011) Hypertension in diabetic nephropathy: epidemiology, mechanisms, and management. Adv Chronic Kidney Dis 18(1):28–41. https://doi.org/10.1053/j.ackd.2010.10.003
Vasylyeva TL, Chen X, Ferry RJ (2005) Insulin-like growth factor binding protein-3 mediates cytokine-induced mesangial cell apoptosis. Growth Hormone IGF Res 15(3):207–214. https://doi.org/10.1016/j.ghir.2005.02.008
Vasylyeva TL, Ferry RJ (2007) Novel roles of the IGF-IGFBP axis in etiopathophysiology of diabetic nephropathy. Diabetes Res Clin Pract 76(2):177–186. https://doi.org/10.1016/j.diabres.2006.09.012
Verrou K-M, Galliou PA, Papaioannou M, Koliakos G (2019) Phosphorylation mapping of Laminin β1-chain: kinases in association with active sites. J Biosci 44(2):55
Vu R, Jin S, Sun P, Haensel D, Nguyen QH, Dragan M et al (2022) Wound healing in aged skin exhibits systems-level alterations in cellular composition and cell-cell communication. Cell Rep 40(5):111155. https://doi.org/10.1016/j.celrep.2022.111155
Wakui H (2020) The pathophysiological role of angiotensin receptor-binding protein in hypertension and kidney diseases: Oshima Award Address 2019. Clin Exp Nephrol 24(4):289–294. https://doi.org/10.1007/s10157-020-01861-4
Wei J, Deng X, Li Y, Li R, Yang Z, Li X et al (2021) PP2 ameliorates renal fibrosis by regulating the NF-κB/COX-2 and PPARγ/UCP2 pathway in diabetic mice. Oxidative Med Cell Longev 2021:7394344. https://doi.org/10.1155/2021/7394344
Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn 32(1):4–24. https://doi.org/10.1109/TNNLS.2020.2978386
Yan M, Li W, Wei R, Li S, Liu Y, Huang Y et al (2023) Identification of pyroptosis-related genes and potential drugs in diabetic nephropathy. J Transl Med 21(1):490. https://doi.org/10.1186/s12967-023-04350-w
Yu K, Li D, Xu F, Guo H, Feng F, Ding Y et al (2021) IDO1 as a new immune biomarker for diabetic nephropathy and its correlation with immune cell infiltration. Int Immunopharmacol 94:107446. https://doi.org/10.1016/j.intimp.2021.107446
Zhang X, Xiao N, Cao Y, Peng Y, Lian A, Chen Y et al (2023) De novo variants in MAST4 related to neurodevelopmental disorders with developmental delay and infantile spasms: genotype-phenotype association. Front Mol Neurosci 16:1097553. https://doi.org/10.3389/fnmol.2023.1097553
Zhao J, Lupino K, Wilkins BJ, Qiu C, Liu J, Omura Y et al (2018) Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease. Proc Natl Acad Sci USA 115(21):E4910–E4919. https://doi.org/10.1073/pnas.1804965115
Zheng X, Ma Y, Bai Y, Huang T, Lv X, Deng J et al (2022) Identification and validation of immunotherapy for four novel clusters of colorectal cancer based on the tumor microenvironment. Front Immunol 13:984480. https://doi.org/10.3389/fimmu.2022.984480
